Study on the effect of substrate material on the mechanical strength of Cu bonds bonded through flip chip bonding

Authors

  • N. Chaitra Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • C. B. Harshitha Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • S. Harsha Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • Ajay Jaswal Central Manufacturing Technology Institute, Bengaluru, Karnataka, India

DOI:

https://doi.org/10.58368/MTT.23.3-4.2024.7-16

Keywords:

Flip Chip Bonding, Cu Pillars, Shear Strength, Bond Testing

Abstract

The application of flip-chip bonding utilizing copper (Cu) pillars has increasingly gained prominence for low-temperature chip-to-chip and chip-to-wafer integration in micro-electromechanical systems (MEMS). A critical factor influencing the bonding efficacy of Cu pillars is the thermal conductivity of the base substrate or chip material. This study aims to systematically assess the bonding strength of Cu-Cu pillar bonds fabricated on silicon (Si) and glass substrates. Employing Hertzian contact theory and Fick’s laws, analysis of the operational parameters pertinent to the experimental evaluation of the impact of substrate material on bonding strength. The experiments show that better bonding of Cu pillars held at bonding temperatures of 180°C and 200°C with the shear strength of 0.0129 MPa and 0.00544 MPa for Cu-Cu pillars bonded through flip chip bonding with silicon and glass substrates, respectively.

Metrics

Metrics Loading ...

References

Clauberg, H., Rezvani, A., Venkatesan, V., Frick, G., Chylak, B., & Strothmann, T. (2016). Chip-to-chip and chip-to-wafer thermocompression flip chip bonding. Proceedings - Electronic Components and Technology Conference, 2016- August, 600-605. https://doi.org/10.1109/ ECTC.2016.329

Derby, B., & Wallach, E. R. (1982). Theoretical model for diffusion bonding. Metal Science, 16(1). https://doi.org/10.1179/030634582790427028

Derby, B., & Wallach, E. R. (1984). Diffusion bonding: Development of theoretical model. Metal Science, 18(9). https://doi. org/10.1179/030634584790419809

Ejeian, F., Azadi, S., Razmjou, A., Orooji, Y., Kottapalli, A., Ebrahimi Warkiani, M., & Asadnia, M. (2019). Design and applications of MEMS flow sensors: A review. Sensors and Actuators, A: Physical, 295. https://doi.org/10.1016/j. sna.2019.06.020

Errando-Herranz, C., Takabayashi, A. Y., Edinger, P., Sattari, H., Gylfason, K. B., & Quack, N. (2020). MEMS for photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics, 26(2). https://doi.org/10.1109/ JSTQE.2019.2943384

Gourgiotis, P. A., Zisis, T., Giannakopoulos, A. E., & Georgiadis, H. G. (2019). The Hertz contact problem in couple-stress elasticity. International Journal of Solids and Structures, 168, 228-237. https://doi.org/10.1016/j.ijsolstr.2019.03.032

Guo, Z. X., & Ridley, N. (1987). Modelling of diffusion bonding of metals.

Hill-F, A., & Wallach, E. R. (1989). Modelling Solid- State Diffusion Bonding. Acta Metall, 37(9).

Hong, K. Bin, Peng, C. Y., Lin, W. C., Chen, K. L., Chen, S. C., Kuo, H. C., Chang, E. Y., & Lin, C. H. (2023). Thermal analysis of flip-chip bonding designs for GaN power HEMTs with an on-chip heat-spreading layer. Micromachines, 14(3). https://doi.org/10.3390/mi14030519

Javed, Y., Mansoor, M., & Shah, I. A. (2019). A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review, 39(5), 652-664. https://doi.org/10.1108/SR-06- 2018-0135

Jia, N., Yao, Y., Peng, Z., Yang, Y., & Chen, S. (2018). Surface effect in axisymmetric Hertzian contact problems. International Journal of Solids and Structures, 150, 241-254. https://doi. org/10.1016/j.ijsolstr.2018.06.019

Kang, S. Y., Williams, P. M., McLaren, T. S., & Lee, Y. C. (1995). Studies of thermosonic bonding for flip-chip assembly. Materials Chemistry & Physics, 42(1). https://doi.org/10.1016/0254- 0584(95)80039-5

Kulkarni, P. D., Nakatani, T., Li, Z., Sasaki, T., & Sakuraba, Y. (2022). The effect of NiFeCr seed layer composition on the giant magneto resistance properties of [FeCoNi/Cu] multilayers. Journal of Magnetism and Magnetic Materials, 560. https://doi.org/ 10.1016/j.jmmm.2022.169562

Li, X., & Mi, C. (2019). Effects of surface tension and Steigmann-Ogden surface elasticity on Hertzian contact properties. International Journal of Engineering Science, 145. https://doi. org/10.1016/j.ijengsci.2019.103165

Muir, C. E., Lowry, B. J., & Balcom, B. J. (2011). Measuring diffusion using the differential form of Fick’s law and magnetic resonance imaging. New Journal of Physics, 13. https://doi. org/10.1088/1367-2630/13/1/015005

Ng, F. C., & Abas, M. A. (2022). Underfill flow in flip-chip encapsulation process: A review. Journal of Electronic Packaging, 144(1). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/1.4050697

Pedder, D. J. (1988). Flip chip solder bonding for microelectronic applications. Microelectronics International: An International Journal, 5(1), 4-7. https://doi.org/10.1108/eb044301

Schwizer, J., Song, W. H., Mayer, M., Brand, O., & Baltes, H. (n.d.). Packaging test chip for flip-chip and wire bonding process characterization.

Shah, M. A., Shah, I. A., Lee, D. G., & Hur, S. (2019). Design approaches of MEMS microphones for enhanced performance. Journal of Sensors. Hindawi Limited. https://doi. org/10.1155/2019/9294528

Suppiah, S., Ong, N. R., Sauli, Z., Sarukunaselan, K., Alcain, J. B., Mahmed, N., & Retnasamy, V. (2017). A crunch on thermocompression flip chip bonding. AIP Conference Proceedings, 1885. https://doi.org/10.1063/1.5002459

Van Milligen, B. P., Bons, P. D., Carreras, B. A., & Śnchez, R. (2005). On the applicability of Fick’s law to diffusion in inhomogeneous systems. European Journal of Physics, 26(5), 913-925. https://doi.org/10.1088/0143-0807/26/5/023

Wang, P. J., & Lee, C. C. (2010). Silver flip-chip technology by solid-state bonding. Journal of Electronic Packaging, 132(3). https://doi. org/10.1115/1.4002297

Xie, H., & Lee, Y. C. (1993). Sa-Yoon Kang Physical and Fuzzy Logic Modeling of a Flip-Chip Thermocompression Bonding Process. http:// www.asme.org

Yang, W., Wang, M., Zhou, Z., Li, L., Yang, G., & Ding, R. (2020). Research on the relationship between macroscopic and mesoscopic mechanical parameters of limestone based on Hertz Mindlin with bonding model. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(4).https://doi.org/10.1007/s40948-020- 00184-8

Zhong, Z. W., Tee, T. Y., & Luan, J. E. (2007). Recent advances in wire bonding, flip chip and lead-free solder for advanced microelectronics packaging. In Microelectronics International, 24(3), 18-26. https://doi.org/10.1108/135653 60710779154

Downloads

Published

01-03-2024

How to Cite

Chaitra, N., Harshitha, C. B., Harsha, S., & Jaswal, A. (2024). Study on the effect of substrate material on the mechanical strength of Cu bonds bonded through flip chip bonding. Manufacturing Technology Today, 23(3-4), 7–16. https://doi.org/10.58368/MTT.23.3-4.2024.7-16