A review on the use of activating flux in gas tungsten arc welding towards obtaining high productivity

Authors

  • Samarendra Acharya Global Institute of Management and Technology, Nadia, West Bengal, India
  • Santanu Das Kalyani Government Engineering College, Kalyani, West Bengal, India

DOI:

https://doi.org/10.58368/MTT.22.7-8.2023.12-28

Keywords:

Welding, GTAW, TIG Welding, ATIG Welding, Activating Flux, Penetration, Productivity

Abstract

This paper mainly focuses on the review of activated flux TIG welding, more commonly known as ATIG, or activated TIG, welding. Tungsten inert gas welding is an imperative process since quality of the welds produced is high. In this process, productivity is usually low and to overcome this limitation, ATIG welding is often used to achieve improved productivity through enhanced penetration. Application of a thin coating of activating flux is made onto the faying surface prior to ATIG welding. By employing ATIG welding, it may be possible to weld 8-10 mm thick stainless steel plates as compared to 2-3 mm in conventional TIG welding. As activating flux, some oxides, chlorides, fluorides, etc. are used with acetone, or alcohol, etc. as the solvent. In ATIG welding, input parameters are chosen such as welding current, welding speed, percentage of activating fluxes, etc. to achieve weld bead with deep penetration and consequently high aspect ratio.

Metrics

Metrics Loading ...

References

Acharya, S., & Das, S. (2020). Effect of activating flux in gas tungsten arc welding. Weld Fab Tech Times, 4, 12-21.

Acharya, S., & Das, S. (2022). Achieving favourable depth of penetration and productivity of ATIG welds utilising the AHP. Indian Science Cruiser, 36, 17-23.

Afolalu, S. A., Ikumapayi, O. M., Emetere, M. E., & Ongbali, S. O. (2021). Investigation of mechanical properties and characterization of a joint using nano flux powder for A-TIG welding. Materials Today: Proceedings, 44, 2879-2883.

Afolalu, S. A., Samuel, O. D., & Ikumapayi, O. M. (2020). Development and characterization of nano- flux welding powder from calcined coconut shell ash admixture with FeO particles. Journal of Materials Research and Technology, 9, 9232-9241.

Afolalu, S. A., Soetan, S. B., Ongbali, S. O., Abioye, A. A., & Oni, A. S. (2019). Impact of activated flux tungsten inert gas (A-TIG) welding on a weld joint of a metal - review. Ist International Conference on Sustainable Infrastructural Development, IOP Conference Series: Materials Science and Engineering, 640.

Ahmad, A., & Alam, S. (2019). Parametric optimization of TIG welding using response surface methodology. Materials Today: Proceedings, 18, 3071-3079.

Ahmadi, E., Ebrahimi, A. R., & Khosroshahi, R. A. (2013). Welding of 304L stainless steel with activated tungsten inert gas process (A-TIG). International Journal of ISSI, 10, 27-33.

Arivazhagan, B., & Vasudevan, M. (2013). A study of microstructure and mechanical properties of grade 91 steel in FBTIG weld joint. Journal of Materials Engineering and Performance, 22, 3708-3716.

Babbar, A., Kumar, A., & Gupta, D. (2019). Enhancement of activated tungsten inert gas (A-TIG) welding using multi-component TiO2- SiO2-Al2O3 hybrid flux. Measurement, 148, 106912/1-16.

Bodkhe, S. C., & Dolas, D. R. (2018). Optimization of activated tungsten inert gas welding of 304L austenitic stainless steel. Procedia Manufacturing, 20, 277-282.

Balos, S., Dramicanin, M., Janjatovic, P., Kulundzic, N., Zabunov, V., Pillic, B., & Kiob, C. D. (2020). Influence of metallic oxide nanoparticles on the mechanical properties of an A-TIG welded 304l austenitic stainless steel. Materials, 13, 1-11.

Bhattacharya, A. (2015). Revisiting arc, metal flow behavior in flux activated tungsten inert gas welding. Materials and Manufacturing Processes, 1-22.

Bose, S., & Das, S. (2021). Experimental investigation on bead-on-plate welding and cladding using pulsed GTAW process. Indian Welding Journal, 54, 64-76.

Cai, Y., Luo, Z., Huang, Z., & Zeng, Y. (2016). Influence of oxides on microstructure and mechanical properties of high strength steel weld joint. High temperature Materials and Processes, 35, 1047-1053.

Capraz, O., Meran, C., Worner, W. A., & Gungor, A. (2015). Using AHP and TOPSIS to evaluate welding processes for manufacturing plain carbon stainless steel storage tank. Archives of Materials Science and Engineering, 75, 157-162.

Chandrasekar, G., Kannan, R., Prabakaran, M. P., & Ganesamoorthy, R. (2020). Effect of activating flux (Metal Oxide) on the weld bead nomenclature of tungsten inert gas welding process – a review. IOP Conf. Series: Materials Science and Engineering, 988, 012084.

Chaudhary, R., Jat, M. L., Nandal, D. P., Sidhu, H. S., Singh, Y., Jat, H. S., Kakraliya, S. K., & Yadav, A. K. (2015). Conservation agriculture practices for enhancing productivity of cotton-wheat system. Haryana J. Agron, 31, 67-74.

Chen, X. Q., Smith, J. S., & Lucas, J. (1990). Microcomputer controlled arc oscillator for automated TIG welding. Journal of Microcomputer Applications, 13, 347-360.

Dhandha, K. H., & Badheka, V. J. (2015). Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process. Journal of Manufacturing Processes, 17, 48-57.

Dixit, P., & Jani, S. (2020). Techniques to weld similar and dissimilar materials by ATIG welding –an overview. Materials and Manufacturing Processes, 1-16.

Fu, L., Yang, Y., Zhang, L., & Wu, Y. (2019). Preparation and characterization of fluoride-incorporated plasma electrolytic oxidation coatings on the AZ31 magnesium alloy. Coatings, 9, 826.

Fujii, H., Sato,T., Lu, S., & Nogi, K. (2008). Development of an advanced A-TIG (AA-TIG) welding method by control of marangoni convection. Materials Science and Engineering, 495, 296-303.

Guiqing, Z., Yingleli, R., & Yunhai, S. (2020). Research for microstructure and mechanical properties of AZ91 magnesium alloy welded joint with magnetic field and activated flux. Materials Research Express, 7, 056511/1-14.

Howse, D. S., & Lucas, W. (2000). Investigation into arc constriction by active fluxes for tungsten inert gas welding. Science and Technology of Welding and Joining, 5, 189-193.

Hui, L., & JiashengiI, Z. (2017). Study of 2219 aluminium alloy using direct current A-TIG welding. International Journal of Modern Physics B, 31, 1744043/1-5.

Katoh, S. (1990). Pulsed TIG welding of aluminium. Welding International, 4, 944-953.

Korkman, E., & Meran, C. (2020). Mechanical properties and microstructure characterization of GTAW of micro-alloyed hot rolled ferritic XPF800 steel. Engineering Science and Technology, An International Journal, 1-11.

Kumar, A., Chauhan, V., & Bist, S. A. (2013). Role of artificial neural network in welding technology: A survey. International Journal of Computer Applications, 67, 32-37.

Kumar, V., Lucas, B., Howse, D., Meltron, G., Raghunathan, S., & Vilarinho, L. (2009). Investigation of the A-TIG mechanism and productivity benefits in TIG welding. Paper presented at 15th International Conference on the Joining of Materials (JOM 15) and 6th International Conference on Education in Welding (ICEW 6) Helsingor, Denmark.

Kumar, V., Lucas, B., & Raghubathan, S. (2009). Successful high-productivity welding with A-TIG Process. 20th International Congress of Mechanical Engineering. Proceedings of COBEM.

Kuo, C. H., Tseng, K. H., & Chou, C. P. (2011). Effect of activated TIG flux on performance of dissimilar welds between mild steel and stainless steel. key engineering materials, 479, 74-80.

Leconte, S. P., Paillard, P., Chapelle, G., & Saindrenan, H. J. (2007). Effects of flux containing fluorides on TIG welding process. Science and Technology of Welding and Joining, 1718, 120-126.

Li, C., Shi, Y., Gu, Y. F., Fan, D., & Zu, M. (2018). Effects of different activating fluxes on the surface tension of molten metal in gas tungsten arc welding. Journal of Manufacturing Processes, 32, 395-402.

Li, H., & Zou, J. (2017). Study of 2219 aluminum alloy using direct current A-TIG welding. International Journal of Modern Physics, 31, 16-19.

Li, H., Zou, J. S. Yao, J. S., & Peng, H. P. (2017). Uniform design and optimization of active agent and technology research for A-TIG welding of 2219 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 1-12.

Li, S. Z., Shen, J., Cao, Z. M., Wang, L. Z., & Xu, N. (2012). Effects of mix activated fluxes coating on microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints. Science and Technology of Welding and Joining, 17, 467-475.

Lin, H. L., & Wu, T. M. (2012). Effects of activating flux on weld bead geometry of inconel 718 alloy TIG welds. Materials and Manufacturing Processes, 27, 1457-1461.

Lin, Y., & Yang, M. (2020). The effects of radiation on heat and mass transfer of magneto hydrodynamic marangoni flow in the boundary layer over a disk. Korean Journal of Chemical Engineering, 37, 37-45.

Liu, L., & Su, N. H. (2008). Study of flux assisted TIG welding of magnesium alloy with SiC particles in flux. Materials Research Innovations, 12, 47-51.

Liu, L., Zhang, Z., Song, G., & Shen, Y. (2006). Effect of cadmium chloride flux in active flux TIG welding of magnesium alloys. Materials Transactions, 47, 446- 449.

Maduraimuthu, V., Vasantharaja, P., Vasudevan, M. & Panigrahi, B. (2021). Microstructure and mechanical properties of 9Cr-0.5Mo 1.8W-VNb (P92) steel weld joints processed by fusion welding. Materials Science and Engineering: A. 813, 141186, 1-14. 10.1016/j. msea.2021.141186.

Magudeeswaran, G. & Sreehari, R. N., Sundar, L. & Harikannan, N. (2014). Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds. Defence Technology. 10(3), 1-10. 10.1016/j. dt.2014.06.006.

Manivannana, S., Vairamuthu, J., Velmurugan, P., Manohar, J. N., Kannan, C. R., & Stalin, B. (2020). Electrochemical studies and corrosion resistance of activated tungsten inert gas AISI SS316L weldments studies and corrosion resistance of activated tungsten inert gas AISI SS316L weldments. IOP Electrochemical Conference Series: Materials Science and Engineering, 988, 012107.

Moghaddam, M. A., & Kolahan, F. (2020a). Modeling and optimization of flux assisted tungsten inert gas welding process using taguchi method and statistical analysis. Amirkabir Journal of Mechanical Engineering, 4, 1-9.

Moghaddam, M. A., & Kolahan, F. (2020b). Optimization of A-TIG welding process using simulated annealing algorithm. Journal of Advanced Manufacturing Systems, 19, 1-23.

Moghaddam, M. A., & Kolahan, F. (2021). Optimization of enhanced TIG welding process using artificial neural network and heuristic algorithms. Research Square, 1-19.

Mohan, P. (2014). Study of the effects of welding parameters on TIG welding of aluminium Plate, a Master of Technology (Production Engineering) thesis submitted to NIT, Rourkela, India.

Niagai, J. (2021). Influence of activated fluxes on the bead shape of A-TIG welds on carbon and low-alloy steels in comparison with stainless steel AISI 304L. Metals, 11, 1-13.

Pandya, D., Badgujar, A., & Ghetity, N. (2020). A novel perception toward welding of stainless steel by activated TIG welding: a review. Materials and Manufacturing Processes, 36(3), 1-27.

Paspulla, A. P., Agisho, H. A., Seetharaman, S., & Vijayakumar, S. (2022). Characterization and analysis of TIG welded stainless steel 304 alloy plates using radiography and destructive testing techniques. Materials Today: Proceedings, 51, Part 1, 935-3.

Patel, D., & Jani, S. (2020). ATIG welding: a small step towards sustainable manufacturing. Advances in Materials and Processing Technologies, 1-22.

Patel, D., Jani, S., Singh, V., & Ashutosh, S. (2021). Develop a sustainable welding procedure for chromium manganese austenitic stainless steel using the ATIG process. Engineering Research Express, 3, 1-12.

Patel, N. P., Badheka, V. J., Vora, J. J., & Upadhyay, G. H. (2019). Effect of oxide fluxes in activated tig welding of stainless steel 316LN to low activation ferritic/martensitic steel (LAFM) dissimilar combination. Transactions of the Indian Institute of Metals, 1-19,

Ramkumar, K. D., Chandrasekhar, A., Singh, A. K., Ahuja, S., Agarwal, A., & Arivazhagan, N. (2015). Comparative studies on the weldability, microstructure and tensile properties of autogeneous TIG welded AISI430 ferritic stainless steel with and without flux. Journal of Manufacturing Processes, 20, 54-69.

Ramkumar, K. D., Varma, J. L. N., Chaitanya, G., Logesh, S., Krishnan, V., & Arivazhagan, N. (2015). Experimental investigations on the sio2 flux-assisted GTA welding of super-austenitic stainless steels. The International Journal of Advanced Manufacturing Technology, 93, 129-131.

Reddy, G. M., Gokhale, A. A., & Rao, K. P. (1998). Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium– lithium alloy sheets. Materials Science and Technology, 14, 61-66.

Roy, S., Samaddar, S., Uddin, M. N., Hoque, A., Mishra, S., & Das, S. (2017). Effect of acting flux on penetration in A-TIG welding of 316 stainless steel. Indian Welding Journal, 50, 72- 80.

Ruckert, G., Perry, N., & Marya, S. (2014). Enhanced weld penetrations in GTA welding with activating fluxes - case studies: plain carbon & stainless steels, titanium and aluminum. Science Arts & Metiers (SAM), 2, 1- 6.

Saha, S., & Das, S. (2018). Investigation on the effect of activating flux on tungsten inert gas welding of austenitic stainless steel using AC polarity. Indian Welding Journal, 51, 84-92.

Saha, S., & Das, S. (2019). Application of activated tungsten inert gas (A-TIG) welding towards improved weld bead morphology in stainless steel specimens. Annual Technical Volume of Production Division Board of The Institution of Engineers (India), 4, 13-23.

Saha, S., & Das, S. (2020). Effect of Polarity and Oxide Fluxes on Weld Bead Geometry in Activated Tungsten Inert Gas (A-TIG) welding. Journal of Welding and Joining, 38, 380-388.

Saha, S., Paul, B. C., & Das, S. (2021). Productivity improvement in butt joining of thick stainless steel plates through the usage of activated TIG welding. SN Applied Sciences, 3(4), 1-14. 10.1007/s42452-021-04409-7.

Sahu, N., Barik, B. K., Sahoo, S., Badjena, S. K., & Sahoo, S. K. (2021). Studies on metallurgical and corrosion characteristics of dissimilar GTAW welding of alloy 800 and SS316L using multi component activated flux. Materials Today: Proceedings, 44, 2533-2536.

Sándor, T., & Dobranszky, J. (2007). The Experiences of activated tungsten inert gas (ATIG) welding applied on 1.4301 type stainless steel plates. Materials Science Forum, 537. 63-70. 10.4028/ www.scientific.net/MSF.537-538.63.

Shahroudi, F. Z., & Halvaei, A. (2019). Effect of activating flux on the weld bead geometry andmicrostructure in TIG Welding of AISI 4140 steel. Paper Presented on 8th International Conference on Materials Engineering and Metallurgy. 7-8th October, Teheran, Iran.

Sharma, P., & Dwivedi, D. K. (2021). Study on Flux assisted-Tungsten inert gas welding of bimetallic P92 martensitic steel-304H austenitic stainless steel using SiO2–TiO2 binary flux. International Journal of Pressure Vessels and Piping, 192, 1-13.

Shen, J., Li, S., Zhai, D., Wen, L., Liu, K., & Dai, Y. (2013). Effects of SiC on the strengthening activated tungsten inert gas (SA-TIG) welded of magnesium alloy. Materials and Manufacturing Processes, 28, 1240-1247.

Shen, J., Zhai, D. J., Liu, K., & Cao, Z. M. (2014). Effects of welding current on properties of A-TIG welded AZ31 magnesium alloy joints with TiO2 coating. Transactions of Nonferrous Metals Society of China, 24, 2507-2515.

Silva, F. G. H., Pinho, A. P., Pereira, A. B., & Paiva, O. C. (2020). Evaluation of welded Joints in P91 steel under different heat-treatment conditions. Metals, 10, 1-23.

Singh, A. K., Dey, V., & Rai, R. N. (2017). Techniques to improve weld penetration in TIG welding: A review. Materials Today: Proceedings, 4, 1252-1259.

Singh, S. R., & Khanna, P. (2021). A-TIG (activated flux tungsten inert gas) welding: A review. Materials Today: Proceedings, 44, 808-820.

Song, G., Li, T., Yu, J., & Liu, L. (2018). A Review of bonding immiscible Mg/Steel dissimilar metals. Materials (Basel), 11, 2515/1-2.

Tanaka, M., Shimizu, T., Terasaki, T., Ushio, M., Koshiishi, F. & Yang, C. L. (2000). Effect of activating flux on arc phenomena in gas tungsten arc welding. Science and Technology of Welding and Joining, 5, 397-402.

Unni, A. K., & Vasudevan, M. (2020). Numerical modelling of fluid flow and weld penetration in activated TIG welding. Materials Today: Proceedings, 27, 2768-2773.

Varshney, D., & Kumar, K. (2021). Effects of activating flux on aluminum 6061 using TIG welding (GTAW). AIP Conference Proceedings, 2341, 040029, 1-5.

Vasantharaja, P., & Vasudevan, M. (2012). Studies on A-TIG welding of low activation ferritic/ martensitic (LAFM) steel. Journal of Nuclear Materials, 421, 117-123.

Venkatesan, G., George, J., & Sawmyasri, M. (2014). Effect of ternary fluxes on depth of penetration in A-TIG welding of AISI 409 Ferritic stainless steel. Procedia Materials Science, 5, 2402-2410.

Vinothkumar, H., Balkrishnan, M., Gulanthaivel, K., Logeshwaran, R., & Mohanraj, R. (2020). Investigation on effects of flux assisted GTAW welding process on mechanical, metallurgical characteristics of dissimilar metals SS 304 and SS 316 L. Materials Today: Proceedings, 33, 3191-3196.

Vora, J., Patel, V. K., Srinivasan, S., Chaudhari, R., Pimenov, D. Y., Giasin, K., & Sharma, S. (2021). Optimization of Activated Tungsten Inert Gas Welding Process Parameters Using Heat Transfer Search Algorithm: With Experimental Validation Using Case Studies. Metals, 11, 1-16.

Vora, J. J., & Badheka, V. J. (2015). Experimental investigation on mechanism and weld morphology of activated tig welded bead-on-plate weldments of reduced activation ferritic/martensitic steel using oxide fluxes. Journal of Manufacturing Processes, 20, 224-233.

Wu, C. S., Ushio, M., & Tanaka, M. (1997). Analysis of the TIG welding arc behavior. Computational Materials Science, 7, 308-314.

Xu, Y. L., Dong, Z. B., Wel, Y. H., & Yang, C. L. (2007). Marangoni convection and weld shape variation in A - TIG welding process. Theoretical and Applied Fracture Mechanics, 48, 178-186.

Yong, F., Ding, F., & QinghuaiI, F. (2007). Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy. Frontiers of Mechanical Engineering in China, 2, 442-447.

Zhang, R. H., Pan, J. L., & Katayama, S. (2011). The mechanism of penetration increase in A-TIG welding. Frontiers of Materials Science, 5, 109-118.

Zhou, M., Shen, J., Hu, D., Gao, R., & Li, S. (2017). Effects of heat treatment on the activated flux TIG-welded AZ31 magnesium alloy joints. International Journal of Advance Manufacturing Technology, 92, 3983-3990.

Zhou, Z., & Huang, Z. (2014). Experimental research of activating fluxes in A-TIG welding of 5052 aluminum alloy. Advanced Materials Research. 941-944. 2058-2061. 10.4028/www.scientific. net/AMR.941-944.2058.

Zou, Y., Rintaro, U., & Hidetoshi, F. (2014). Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Materials Characterisation, 91, 42-49.

Downloads

Published

01-07-2023

How to Cite

Acharya, S., & Das, S. (2023). A review on the use of activating flux in gas tungsten arc welding towards obtaining high productivity. Manufacturing Technology Today, 22(7-8), 12–28. https://doi.org/10.58368/MTT.22.7-8.2023.12-28