Recovering cutting tool modal parameters from randomly sampled signals using compressed sensing

Authors

  • Harsh Singh Rajput Indian Institute of Technology Kanpur, Kanpur, India
  • Mohit Law Indian Institute of Technology Kanpur, Kanpur, India

DOI:

https://doi.org/10.58368/MTT.22.2.2023.17-22

Keywords:

Compressed Sensing, Modal Parameters, Nyquist Theorem, Sparse Signal, Cutting Tools

Abstract

A change in the modal parameters of cutting tools could signal tool wear, tool breakage, or other instabilities. The cutting process must be continuously monitored using vibration signals to detect such changes. Since tools vibrate with frequencies of up to a few kHz, continuous monitoring requires sampling at rates of tens of kHz to respect the Nyquist limit. Processing and storing such large data for decision making is cumbersome. To address this issue, this paper discusses the use of a compressed sensing framework that enables non-uniform random sampling at rates below the Nyquist limit. For cutting tools, we show for the first time using synthesized data that it is possible to reconstruct original signals from as few as 1% of the original data. We numerically test the method to characterize the influence of damping, noise, and multiple modes. Recovered modal parameters from the reconstructed signal agree with signals sampled properly.

Metrics

Metrics Loading ...

References

Candes, E. J., Romberg, J., & Tao T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489-509. https://doi. org/10.1109/TIT.2005.862083

Candes, E., &Wakin, M. B. (2008).An introduction to compressive sampling.IEEE Signal Processing Magazine, 25(2), 21-30. https://doi.org/ 10.1109/MSP.2007.914731

Chen, S., &Donoho, D. (1994).Basis pursuit.Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, 1, 41-44. https://doi.org/10.1109/ACSSC.1994.471413

Donoho, D. L. (2006).Compressed sensing.IEEE Transactions on Information Theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006. 871582

Gill, P. R., Wang, A., & Molnar, A. (2011).The in-crowd algorithm for fast basis pursuit denoising.IEEE Transactions on Signal Processing, 59(10), 4595-4605. https://doi. org/10.1109/TSP.2011.2161292

Grant, M., & Boyd, S. (2013). CVX: MATLAB software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx

Gupta, P., Law, M., &Mukhopadhyay, S. (2020). Evaluating tool point dynamics using output-only modal analysis with mass-change methods.CIRP Journal of Manufacturing Science and Technology, 31, 251-264. https://doi. org/10.1016/j.cirpj.2020.06.001

Iglesias, A., Tunç, L. T., Özsahin, O., Franco, O., Munoa J., &Budak E. (2022). Alternative experimental methods for machine tool dynamics identification: A review. Mechanical Systems and Signal Processing, 170, 108837. https://doi.org/10.1016/j.ymssp.2022.108837

Juang, J., &Pappa, R. S. (1985).An eigensystem realization algorithm for modal parameter identification and model reduction.Journal of Guidance Control and Dynamics, 8(5), 620-627. https://doi.org/10.2514/3.20031

Lambora, R., Nuhman, A. P., Law, M., &Mukhopadyay, S. (2022). Recovering cutting tool modal parameters from fractionally uncorrelated and potentially aliased signals.Annals of the CIRP, 38, 414-426. https://doi.org/10.1016/j. cirpj.2022.05.014

Law, M., Gupta, P., &Mukhopadhyay, S. (2020). Modal analysis of machine tools using Visual Vibrometry and output-only methods.Annals of the CIRP, 69, 357-360. https://doi.org/10.1016/j. cirp.2020.04.043

Law, M., Lambora, R., Nuhman, A. P., &Mukhopadhyay, S. (2022). Modal parameter recovery from temporally aliased video recordings of cutting tools.Annals of the CIRP, 71(1), 329-332. https://doi.org/10.1016/j.cirp. 2022.03.023

Martinez, B., Green, A., Silva, M. F., Yang, Y., &Mascareñas, D. (2020).Sparse and random sampling techniques for high-resolution, full-field, BSS-based structural dynamics identification from video, Sensors.20(12), 3526. https://doi.org/10.3390/s20123526

Metropolis, N., &Ulam, S. (1949). The Monte Carlo method.Journal of the American Statistical Association.44(247), 335-341. https://doi. org/10.2307/2280232

Yang, Y., &Nagarajaiah, S. (2015). Output-only modal identification by compressed sensing: non-uniform low-rate random sampling. Mechanical Systems and Signal Processing, 56-57, 15-34.https://doi.org/10.1016/j. ymssp.2014.10.015

Yazicigil, R. T., Haque, T., Kinget, P. R., & Wright, J. (2019).Taking compressive sensing to the hardware level: breaking fundamental radio-frequency hardware performance tradeoffs.IEEE Signal Processing Magazine, 36(2), 81-100. https://doi.org/10.1109/MSP.2018.2880837

Downloads

Published

01-02-2023

How to Cite

Rajput, H. S., & Law, M. (2023). Recovering cutting tool modal parameters from randomly sampled signals using compressed sensing. Manufacturing Technology Today, 22(2), 17–22. https://doi.org/10.58368/MTT.22.2.2023.17-22