Simulation of temperature and residual stress field in friction stir welded AISI 304 stainless steel joints
Keywords:
Stainless Steel, Friction Stir Welding, Finite Element Analysis, Temperature Distribution, Residual StressAbstract
Three-dimensional nonlinear thermal and thermo-mechanical numerical simulations are conducted for the friction stir welding of AISI 304 stainless steel. The finite element analysis code SYSWELD was used to simulate the results using inverse approach. Defect free welds were made experimentally using a rotational speed, welding speed and shoulder diameter of 800 rpm, 90 mm/min and 20 mm respectively. Residual stress measurement was carried out with X-ray stress analyzer employing CrKα radiation. The transient temperature fields were obtained by finite element simulation and the residual stresses in the welded plate are calculated using a three-dimensional elastic–plastic thermo-mechanical simulation. The results of the simulation are in good agreement with that of experimental results.
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.