Modelling of micro-machining of Ti-6Al-4V
strain gradient interpretation
DOI:
https://doi.org/10.58368/MTT.22.4.2023.32-38Keywords:
Micro-Cutting, Residual Stress, Chip Morphology, Ti-6Al-4VAbstract
Advances in computer methods over the last two decades have accelerated research in engineering sectors because of high computing power. Micro-machining is a manufacturing domain that is widely utilized for producing miniature components where predictability is a concern. The current work emphasized developing and executing a user-defined constitutive flow and friction models to simulate the physical phenomenon of chip morphology, residual stresses, and cutting forces during orthogonal machining at the micro-scale. The proposed model integrates strain gradient and dynamic recrystallization effect using a user hardening subroutine written in Fortran for machining of Ti-6Al-4V in micron scale. Furthermore, a user defined friction subroutine was implemented at the tool-chip interaction. A comparison is made between the modelling results and experiments in terms of specific cutting energy (SCE) and residual stresses.
Metrics
References
Calamaz, M., Coupard, D., &Girot, F. (2010). Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Machining Science and Technology, 14(2), 244-257. https://doi.org/10.1080/10910344.20 10.500957
Chae, J., Park, S. S., &Freiheit, T. (2006).Investigation of micro-cutting operations.International Journal of Machine Tools and Manufacture, 46(3-4), 313-332. https://doi.org/10.1016/j. ijmachtools.2005.05.015
Chen, G., Ren, C., Yang, X., Jin, X., &Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. International Journal of Advanced Manufacturing Technology, 56(9-12), 1027-1038. https://doi.org/10.1007/s00170- 011-3233-6
Ducobu, F., Rivière-Lorphèvre, E., &Filippi, E. (2017).Experimental and numerical investigation of the uncut chip thickness reduction in Ti6Al4V orthogonal cutting.Meccanica, 52(7), 1577- 1592. https://doi.org/10.1007/s11012-016- 0499-7
Harzallah, M., Pottier, T., Senatore, J., Mousseigne, M., Germain, G., & Landon, Y. (2017). Numerical and experimental investigations of Ti-6Al-4V chip generation and thermo-mechanical couplings in orthogonal cutting. International Journal of Mechanical Sciences, 134(October), 189-202. https://doi.org/10.1016/j.ijmecsci. 2017.10.017
Lai, X., Li, H., Li, C., Lin, Z., & Ni, J. (2008). Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. International Journal of Machine Tools and Manufacture, 48(1), 1-14. https://doi. org/10.1016/j.ijmachtools.2007.08.011
Liu, G., Zhang, D., & Yao, C. (2021). A modified constitutive model coupled with microstructure evolution incremental model for machining of titanium alloy Ti–6Al–4V. Journal of Materials Processing Technology, 297(June). https://doi. org/10.1016/j.jmatprotec.2021.117262
Özel, T., &Karpat, Y. (2007).Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms.Materials and Manufacturing Processes, 22(5), 659-667. https://doi.org/10.1080/10426910701323631
Sima, M., &Özel, T. (2010). Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 50(11), 943-960. https://doi. org/10.1016/j.ijmachtools.2010.08.004
Wang, J. S., Gong, Y. D., Abba, G., Chen, K., Shi, J. S., &Cai, G. Q. (2008). Surface generation analysis in micro end-milling considering the influences of grain. Microsystem Technologies, 14(7), 937-942. https://doi.org/10.1007/s00542-007- 0478-y
Yadav, R., K, V., & Mathew, J. (2021).Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy. Journal of Manufacturing Processes, 62 (December 2020), 600-612. https://doi.org/10.1016/j. jmapro.2020.12.031
Yadav, R., Chakladar, N. D., & Paul, S. (2022a). A dynamic recrystallization based constitutive flow model for micro-machining of Ti-6Al-4V. Journal of Manufacturing Processes, 77(March), 463-484. https://doi.org/10.1016/j. jmapro.2022.03.040
Yadav, R., Chakladar, N. D., & Paul, S. (2022b). Micro-milling of Ti-6Al-4 V with controlled burr formation. International Journal of Mechanical Sciences, 231(July), 107582. https://doi. org/10.1016/j.ijmecsci.2022.107582
Zeng, H. H., Yan, R., Peng, F. Y., Zhou, L., & Deng, B. (2017). An investigation of residual stresses in micro-end-milling considering sequential cuts effect. International Journal of Advanced Manufacturing Technology, 91(9-12), 3619- 3634. https://doi.org/10.1007/s00170-017- 0088-5
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.