Review on surface modification of microelectrode array for extracellular recording of the neural interface system
Keywords:
Microelectrode Array, Neural Interface Systems, Laser and EDM Fabrication Techniques, Surface ModificationAbstract
Globally neurological diseases are increasing due to unhealthy lifestyles, environmental influences, and physical injuries. So, MEA (microelectrode array) based neural interface systems can restore the lost neural functions to treat neurological diseases through stimulating or recording a neuronal signal. In 1664 Jan Swammerdam was the first to explain nerve function and nerve stimulation. Nowadays, many neural recording systems are available for interfacing with the brain. These systems can be classified into two ways: intracellular or extracellular recording. The extracellular recording is the technique of recording or stimulating the neural signals by placing the electrode near the tissues or cells. It is a less invasive approach compared to an intracellular recording. Generally, the neural interface systems are classified as the CNS (central nervous system) and PNS (peripheral nervous system). Microelectrode arrays can interface in the central nervous system to treat neurological diseases. A mechanical mismatch is a significant problem that arises during the insertion of the implant into the brain tissue. So, various surface modification techniques are considered a viable solution among researchers to address this issue. Also, laser and EDM-based new fabrication techniques are getting more attention over photolithography techniques for reducing the fabrication timing, cost, and usage of hazardous chemicals.
Metrics
References
Abidian, M. R., & Martin, D. C. (2008). Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials, 29(9), 1273–1283. https://doi.org/10.1016/j.biomaterials.2007.11.022
Bamberg, E., & Rakwal, D. (2008). Experimental investigation of wire electrical discharge machining of gallium-doped germanium. Journal of Materials Processing Technology, 197(1–3), 419–427. https://doi.org/10.1016/j.jmatprotec.2007.06.038
Bao, M., & Wang, W. (1996). Future of microelectromechanical systems (MEMS). Sensors and Actuators, A: Physical, 56(1–2). https://doi.org/10.1016/0924-4247(96)01274-5
Berces, Z., Toth, K., Marton, G., Pál, I., KovátsMegyesi, B., Fekete, Z., Ulbert, I., & Pongrácz, A. (2016). Neurobiochemical changes in the vicinity of a nanostructured neural implant. Scientific Reports, 6. https://doi.org/10.1038/srep35944
Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407–420. https://doi.org/10.1038/nrn3241
Chaileshwar, R. D., Mamilla, R. S., & Magadum, S. (2020), A brief review on laser surface texturing of biomaterials for cell culture applications. Manufacturing Technology Today, 19(9), 8-12. http://www.ischolar.info/index.php/MTT/article/view/207948
Chapman, C. A. R., Chen, H., Stamou, M., Biener, J., Biener, M. M., Lein, P. J., & Seker, E. (2015). Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Applied Materials and Interfaces, 7(13), 7093–7100. https://doi. org/10.1021/acsami.5b00410
Cheung, K. C., Renaud, P., Tanila, H., &Djupsund, K. (2007). Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8), 1783–1790. https://doi.org/10.1016/j.bios.2006.08.035
Dee, K. C., Puleo, D. A., & Bizios, R. (2003). An Introduction To Tissue-Biomaterial Interactions. An Introduction To TissueBiomaterial Interactions. https://doi.org/10.1002/0471270598
Du, Z. J., Kolarcik, C. L., Kozai, T. D. Y., Luebben, S. D., Sapp, S. A., Zheng, X. S., Nabity, J. A., & Cui, X. T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 53, 46–58. https://doi.org/10.1016/j.actbio.2017.02.010
Ereifej, E. S., Smith, C. S., Meade, S. M., Chen, K., Feng, H., & Capadona, J. R. (2018). The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials, 28(12). https://doi.org/10.1002adfm.201704420
Fattahi, P., Yang, G., Kim, G., & Abidian, M. R. (2014). A review of organic and inorganic biomaterials for neural interfaces. Advanced Materials, 26(12), 1846-1885. Wiley-VCH Verlag. https://doi.org/10.1002/adma.201304496
Ferguson, M., Sharma, D., Ross, D., & Zhao, F. (2019). A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Advanced Healthcare Materials, 8(19). Wiley-VCH Verlag. https://doi.org/10.1002/adhm.201900558
Fiáth, R., Hofer, K. T., Csikós, V., Horváth, D., Nánási, T., Tóth, K., Pothof, F., Böhler, C., Asplund, M., Ruther, P., & Ulbert, I. (2018). Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomedizinische Technik, 63(3), 301–315. https://doi.org/10.1515/bmt-2017-0154
Frazier, A. B. (1995). Recent applications of polyimide to micromachining technology. IEEE transactions on industrial electronics, 42(5), 442 - 448
Ghane-Motlagh, B., & Sawan, M. (2013). A review of Microelectrode Array technologies: Design and implementation challenges. 2013 2nd International Conference on Advances in Biomedical Engineering, ICABME 2013, 38–41. https://doi.org/10.1109/ICABME.2013.6648841
Gorham, W. F. (1966). A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry, 4(12). https://doi.org/10.1002/pol.1966.150041209
Gower, M. C. (2001). Laser micromachining for manufacturing MEMS devices. MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, 4559. https://doi.org/10.1117/12.443040
Green, R. A., Ordonez, J. S., Schuettler, M., Poole-Warren, L. A., Lovell, N. H., & Suaning, G. J. (2010). Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials, 31(5), 886–893. https://doi.org/10.1016/j.biomaterials.2009.09.099
Hamel, E. J. O., Grewe, B. F., Parker, J. G., & Schnitzer, M. J. (2015). Cellular level brain imaging in behaving mammals: An engineering approach. In Neuron, 86(1), 140-159. Cell Press. https://doi.org/10.1016/j.neuron.2015.03.055
Hassler, C., Boretius, T., & Stieglitz, T. (2011). Polymers for neural implants. Journal of Polymer Science, Part B: Polymer Physics, 49 (1), 18–33. https://doi.org/10.1002/polb.22169
Hayden, C. J., & Dalton, C. (2010). Direct patterning of microelectrode arrays using femtosecond laser micromachining. Applied Surface Science, 256(12), 3761–3766. https://doi.org/10.1016/j.apsusc.2010.01.022
Holmes, A. S. (2001). Laser fabrication and assembly processes for MEMS. Laser Applications in Microelectronic and Optoelectronic Mnf VI, 4274. https://doi.org/10.1117/12.432522
Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E. A., Betancur, M., Stanley, G. B., Carin, L., & Bellamkonda, R. V. (2013). Relationship between intracortical electrode design and chronic recording function. Biomaterials, 34(33), 8061–8074. https://doi.org/10.1016/j.biomaterials.2013.07.016
Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F., & Gross, G. W. (2008). Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 3(7), 434–439. https://doi.org/10.1038/nnano.2008.174
Khorasani, M. T., &Mirzadeh, H. (2004). BHK cells behaviour on laser treated polydimethylsiloxane surface. Colloids and Surfaces B: Biointerfaces, 35(1), 67–71. https://doi.org/10.1016/j.colsurfb.2004.01.011
Kornblum, H. I., Araujo, D. M., Annala, A. J., Tatsukawa, K. J., Phelps, M. E., & Cherry, S. R. (2000). In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nature Biotechnology, 18(6), 655–660. https://doi.org/10.1038/76509
Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., & Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience, 6(1), 48–67. https://doi.org/10.1021/cn500256e
Lee, S. K., & Na, S. J. (1999). KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A: Materials Science and Processing, 68(4), 417–423. https://doi.org/10.1007/s003390050916
Liu, Y., Zhang, X., & Hao, P. (2016). The effect of topography and wettability of biomaterials on platelet adhesion. Journal of Adhesion Science and Technology, 30(8), 878–893. https://doi.org/10.1080/01694243.2015.1129883
Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S., Fowler, R. A., Holloway, S., Dunn, A. K., Chitwood, R. A., & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science Advances, 3(2). https://doi.org/10.1126/sciadv.1601966
Neuron - Servier Medical Art. (n.d.). Retrieved December 9, 2021, from https://smart.servier.com/smart_image/neuron/
Nicholls, J. G., & Kuffler, S. W. (2012). From Neuron to brain. Neuroscience (Fifth edition.). Sinauer Associates Inc.
Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1–18. https://doi.org/10.1016/j.jneumeth.2005.08.015
Qi, D., Liu, Z., Liu, Y., Jiang, Y., Leow, W. R., Pal, M., Pan, S., Yang, H., Wang, Y., Zhang, X., Yu, J., Li, B., Yu, Z., Wang, W., & Chen, X. (2017). Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Advanced Materials, 29(40). https://doi.org/10.1002/adma.201702800
Rakwal, D., Heamawatanachai, S., Tathireddy, P., Solzbacher, F., & Bamberg, E. (2009). Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsystem Technologies, 15(5), 789-797. https://doi.org/10.1007/s00542-009-0792-7
Rastogi, S. K., & Cohen-Karni, T. (2019). Nanoelectronics for neuroscience. Encyclopedia of Biomedical Engineering, (Vols. 1–3, pp. 631–649). https://doi.org/10.1016/B978-0-12-801238-3.99893-3
Reich, U., Mueller, P. P., Fadeeva, E., Chichkov, B. N., Stoever, T., Fabian, T., Lenarz, T., & Reuter, G. (2008). Differential fine-tuning of cochlear implant material-cell interactions by femtosecond laser microstructuring. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 87(1), 146–153. https://doi.org/10.1002/jbm.b.31084
Rodger, D. C., Fong, A. J., Li, W., Ameri, H., Ahuja, A. K., Gutierrez, C., Lavrov, I., Zhong, H., Menon, P. R., Meng, E., Burdick, J. W., Roy, R. R., Edgerton, V. R., Weiland, J. D., Humayun, M. S., & Tai, Y. C. (2008). Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators, B: Chemical, 132(2), 449–460. https://doi.org/10.1016/j.snb.2007.10.069
Rubehn, B., & Stieglitz, T. (2010). In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials, 31(13), 3449–3458. https://doi.org/10.1016/j.biomaterials.2010.01.053
Salari, A., & Dalton, C. (2020). Editorial on the special issue on microelectrode arrays and application to medical devices. Micromachines, 11(8). MDPI AG. https://doi.org/10.3390/MI11080776
Scanziani, M., & Häusser, M. (2009). Electrophysiology in the age of light. Nature, 461( 7266), 930-939. https://doi.org/10.1038/nature08540
Sohal, H. S., Clowry, G. J., Jackson, A., O’Neill, A., & Baker, S. N. (2016). Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0165606
Song, X., Meeusen, W., Reynaerts, D., & van Brussel, H. (25 August 2000). Experimental Study of Micro-EDM Machining Performances on Silicon Wafer. Proc. SPIE 4174, Micromachining and microfabrication Process Technology VI. http://proceedings.spiedigitallibrary.org/
Spira, M. E., & Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology, 8(2), 83-94. Nature Publishing Group. https://doi.org/10.1038/nnano.2012.265
Stieglitz, T. (2016). Development of a polymer based neural probe.
Szostak, K. M., Grand, L., & Constandinou, T. G. (2017). Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics. In Frontiers in Neuroscience (Vol. 11, Issue DEC). Frontiers Media S.A. https://doi.org/10.3389/fnins.2017.00665
Ward, M. P., Rajdev, P., Ellison, C., & Irazoqui, P. P. (2009). Toward a comparison of microelectrodes for acute and chronic recordings. Brain Research, 1282, 183–200. https://doi.org/10.1016/j.brainres.2009.05.052
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.https://doi.org/10.1016/j.biomaterials.2008.04.023
Zhang, E. N., Clément, J. P., Alameri, A., Ng, A., Kennedy, T. E., & Juncker, D. (2021). Mechanically Matched Silicone Brain Implants Reduce Brain Foreign Body Response. Advanced Materials Technologies, 6(3). https://doi.org/10.1002/admt.202000909
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.