Review on surface modification of microelectrode array for extracellular recording of the neural interface system

Authors

  • R. Vignesh Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • Sunil Magadum Central Manufacturing Technology Institute, Bengaluru, Karnataka, India
  • K. Niranjan Reddy Central Manufacturing Technology Institute, Bengaluru, Karnataka, India

Keywords:

Microelectrode Array, Neural Interface Systems, Laser and EDM Fabrication Techniques, Surface Modification

Abstract

Globally neurological diseases are increasing due to unhealthy lifestyles, environmental influences, and physical injuries. So, MEA (microelectrode array) based neural interface systems can restore the lost neural functions to treat neurological diseases through stimulating or recording a neuronal signal. In 1664 Jan Swammerdam was the first to explain nerve function and nerve stimulation. Nowadays, many neural recording systems are available for interfacing with the brain. These systems can be classified into two ways: intracellular or extracellular recording. The extracellular recording is the technique of recording or stimulating the neural signals by placing the electrode near the tissues or cells. It is a less invasive approach compared to an intracellular recording. Generally, the neural interface systems are classified as the CNS (central nervous system) and PNS (peripheral nervous system). Microelectrode arrays can interface in the central nervous system to treat neurological diseases. A mechanical mismatch is a significant problem that arises during the insertion of the implant into the brain tissue. So, various surface modification techniques are considered a viable solution among researchers to address this issue. Also, laser and EDM-based new fabrication techniques are getting more attention over photolithography techniques for reducing the fabrication timing, cost, and usage of hazardous chemicals.

Metrics

Metrics Loading ...

References

Abidian, M. R., & Martin, D. C. (2008). Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials, 29(9), 1273–1283. https://doi.org/10.1016/j.biomaterials.2007.11.022

Bamberg, E., & Rakwal, D. (2008). Experimental investigation of wire electrical discharge machining of gallium-doped germanium. Journal of Materials Processing Technology, 197(1–3), 419–427. https://doi.org/10.1016/j.jmatprotec.2007.06.038

Bao, M., & Wang, W. (1996). Future of microelectromechanical systems (MEMS). Sensors and Actuators, A: Physical, 56(1–2). https://doi.org/10.1016/0924-4247(96)01274-5

Berces, Z., Toth, K., Marton, G., Pál, I., KovátsMegyesi, B., Fekete, Z., Ulbert, I., & Pongrácz, A. (2016). Neurobiochemical changes in the vicinity of a nanostructured neural implant. Scientific Reports, 6. https://doi.org/10.1038/srep35944

Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407–420. https://doi.org/10.1038/nrn3241

Chaileshwar, R. D., Mamilla, R. S., & Magadum, S. (2020), A brief review on laser surface texturing of biomaterials for cell culture applications. Manufacturing Technology Today, 19(9), 8-12. http://www.ischolar.info/index.php/MTT/article/view/207948

Chapman, C. A. R., Chen, H., Stamou, M., Biener, J., Biener, M. M., Lein, P. J., & Seker, E. (2015). Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Applied Materials and Interfaces, 7(13), 7093–7100. https://doi. org/10.1021/acsami.5b00410

Cheung, K. C., Renaud, P., Tanila, H., &Djupsund, K. (2007). Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors and Bioelectronics, 22(8), 1783–1790. https://doi.org/10.1016/j.bios.2006.08.035

Dee, K. C., Puleo, D. A., & Bizios, R. (2003). An Introduction To Tissue-Biomaterial Interactions. An Introduction To TissueBiomaterial Interactions. https://doi.org/10.1002/0471270598

Du, Z. J., Kolarcik, C. L., Kozai, T. D. Y., Luebben, S. D., Sapp, S. A., Zheng, X. S., Nabity, J. A., & Cui, X. T. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 53, 46–58. https://doi.org/10.1016/j.actbio.2017.02.010

Ereifej, E. S., Smith, C. S., Meade, S. M., Chen, K., Feng, H., & Capadona, J. R. (2018). The Neuroinflammatory Response to Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Advanced Functional Materials, 28(12). https://doi.org/10.1002adfm.201704420

Fattahi, P., Yang, G., Kim, G., & Abidian, M. R. (2014). A review of organic and inorganic biomaterials for neural interfaces. Advanced Materials, 26(12), 1846-1885. Wiley-VCH Verlag. https://doi.org/10.1002/adma.201304496

Ferguson, M., Sharma, D., Ross, D., & Zhao, F. (2019). A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Advanced Healthcare Materials, 8(19). Wiley-VCH Verlag. https://doi.org/10.1002/adhm.201900558

Fiáth, R., Hofer, K. T., Csikós, V., Horváth, D., Nánási, T., Tóth, K., Pothof, F., Böhler, C., Asplund, M., Ruther, P., & Ulbert, I. (2018). Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomedizinische Technik, 63(3), 301–315. https://doi.org/10.1515/bmt-2017-0154

Frazier, A. B. (1995). Recent applications of polyimide to micromachining technology. IEEE transactions on industrial electronics, 42(5), 442 - 448

Ghane-Motlagh, B., & Sawan, M. (2013). A review of Microelectrode Array technologies: Design and implementation challenges. 2013 2nd International Conference on Advances in Biomedical Engineering, ICABME 2013, 38–41. https://doi.org/10.1109/ICABME.2013.6648841

Gorham, W. F. (1966). A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry, 4(12). https://doi.org/10.1002/pol.1966.150041209

Gower, M. C. (2001). Laser micromachining for manufacturing MEMS devices. MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, 4559. https://doi.org/10.1117/12.443040

Green, R. A., Ordonez, J. S., Schuettler, M., Poole-Warren, L. A., Lovell, N. H., & Suaning, G. J. (2010). Cytotoxicity of implantable microelectrode arrays produced by laser micromachining. Biomaterials, 31(5), 886–893. https://doi.org/10.1016/j.biomaterials.2009.09.099

Hamel, E. J. O., Grewe, B. F., Parker, J. G., & Schnitzer, M. J. (2015). Cellular level brain imaging in behaving mammals: An engineering approach. In Neuron, 86(1), 140-159. Cell Press. https://doi.org/10.1016/j.neuron.2015.03.055

Hassler, C., Boretius, T., & Stieglitz, T. (2011). Polymers for neural implants. Journal of Polymer Science, Part B: Polymer Physics, 49 (1), 18–33. https://doi.org/10.1002/polb.22169

Hayden, C. J., & Dalton, C. (2010). Direct patterning of microelectrode arrays using femtosecond laser micromachining. Applied Surface Science, 256(12), 3761–3766. https://doi.org/10.1016/j.apsusc.2010.01.022

Holmes, A. S. (2001). Laser fabrication and assembly processes for MEMS. Laser Applications in Microelectronic and Optoelectronic Mnf VI, 4274. https://doi.org/10.1117/12.432522

Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E. A., Betancur, M., Stanley, G. B., Carin, L., & Bellamkonda, R. V. (2013). Relationship between intracortical electrode design and chronic recording function. Biomaterials, 34(33), 8061–8074. https://doi.org/10.1016/j.biomaterials.2013.07.016

Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F., & Gross, G. W. (2008). Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology, 3(7), 434–439. https://doi.org/10.1038/nnano.2008.174

Khorasani, M. T., &Mirzadeh, H. (2004). BHK cells behaviour on laser treated polydimethylsiloxane surface. Colloids and Surfaces B: Biointerfaces, 35(1), 67–71. https://doi.org/10.1016/j.colsurfb.2004.01.011

Kornblum, H. I., Araujo, D. M., Annala, A. J., Tatsukawa, K. J., Phelps, M. E., & Cherry, S. R. (2000). In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nature Biotechnology, 18(6), 655–660. https://doi.org/10.1038/76509

Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., & Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience, 6(1), 48–67. https://doi.org/10.1021/cn500256e

Lee, S. K., & Na, S. J. (1999). KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A: Materials Science and Processing, 68(4), 417–423. https://doi.org/10.1007/s003390050916

Liu, Y., Zhang, X., & Hao, P. (2016). The effect of topography and wettability of biomaterials on platelet adhesion. Journal of Adhesion Science and Technology, 30(8), 878–893. https://doi.org/10.1080/01694243.2015.1129883

Luan, L., Wei, X., Zhao, Z., Siegel, J. J., Potnis, O., Tuppen, C. A., Lin, S., Kazmi, S., Fowler, R. A., Holloway, S., Dunn, A. K., Chitwood, R. A., & Xie, C. (2017). Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Science Advances, 3(2). https://doi.org/10.1126/sciadv.1601966

Neuron - Servier Medical Art. (n.d.). Retrieved December 9, 2021, from https://smart.servier.com/smart_image/neuron/

Nicholls, J. G., & Kuffler, S. W. (2012). From Neuron to brain. Neuroscience (Fifth edition.). Sinauer Associates Inc.

Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1–18. https://doi.org/10.1016/j.jneumeth.2005.08.015

Qi, D., Liu, Z., Liu, Y., Jiang, Y., Leow, W. R., Pal, M., Pan, S., Yang, H., Wang, Y., Zhang, X., Yu, J., Li, B., Yu, Z., Wang, W., & Chen, X. (2017). Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Advanced Materials, 29(40). https://doi.org/10.1002/adma.201702800

Rakwal, D., Heamawatanachai, S., Tathireddy, P., Solzbacher, F., & Bamberg, E. (2009). Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsystem Technologies, 15(5), 789-797. https://doi.org/10.1007/s00542-009-0792-7

Rastogi, S. K., & Cohen-Karni, T. (2019). Nanoelectronics for neuroscience. Encyclopedia of Biomedical Engineering, (Vols. 1–3, pp. 631–649). https://doi.org/10.1016/B978-0-12-801238-3.99893-3

Reich, U., Mueller, P. P., Fadeeva, E., Chichkov, B. N., Stoever, T., Fabian, T., Lenarz, T., & Reuter, G. (2008). Differential fine-tuning of cochlear implant material-cell interactions by femtosecond laser microstructuring. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 87(1), 146–153. https://doi.org/10.1002/jbm.b.31084

Rodger, D. C., Fong, A. J., Li, W., Ameri, H., Ahuja, A. K., Gutierrez, C., Lavrov, I., Zhong, H., Menon, P. R., Meng, E., Burdick, J. W., Roy, R. R., Edgerton, V. R., Weiland, J. D., Humayun, M. S., & Tai, Y. C. (2008). Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators, B: Chemical, 132(2), 449–460. https://doi.org/10.1016/j.snb.2007.10.069

Rubehn, B., & Stieglitz, T. (2010). In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials, 31(13), 3449–3458. https://doi.org/10.1016/j.biomaterials.2010.01.053

Salari, A., & Dalton, C. (2020). Editorial on the special issue on microelectrode arrays and application to medical devices. Micromachines, 11(8). MDPI AG. https://doi.org/10.3390/MI11080776

Scanziani, M., & Häusser, M. (2009). Electrophysiology in the age of light. Nature, 461( 7266), 930-939. https://doi.org/10.1038/nature08540

Sohal, H. S., Clowry, G. J., Jackson, A., O’Neill, A., & Baker, S. N. (2016). Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0165606

Song, X., Meeusen, W., Reynaerts, D., & van Brussel, H. (25 August 2000). Experimental Study of Micro-EDM Machining Performances on Silicon Wafer. Proc. SPIE 4174, Micromachining and microfabrication Process Technology VI. http://proceedings.spiedigitallibrary.org/

Spira, M. E., & Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology, 8(2), 83-94. Nature Publishing Group. https://doi.org/10.1038/nnano.2012.265

Stieglitz, T. (2016). Development of a polymer based neural probe.

Szostak, K. M., Grand, L., & Constandinou, T. G. (2017). Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics. In Frontiers in Neuroscience (Vol. 11, Issue DEC). Frontiers Media S.A. https://doi.org/10.3389/fnins.2017.00665

Ward, M. P., Rajdev, P., Ellison, C., & Irazoqui, P. P. (2009). Toward a comparison of microelectrodes for acute and chronic recordings. Brain Research, 1282, 183–200. https://doi.org/10.1016/j.brainres.2009.05.052

Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.https://doi.org/10.1016/j.biomaterials.2008.04.023

Zhang, E. N., Clément, J. P., Alameri, A., Ng, A., Kennedy, T. E., & Juncker, D. (2021). Mechanically Matched Silicone Brain Implants Reduce Brain Foreign Body Response. Advanced Materials Technologies, 6(3). https://doi.org/10.1002/admt.202000909

Downloads

Published

01-01-2022

How to Cite

Vignesh, R., Magadum, S., & Reddy , K. N. (2022). Review on surface modification of microelectrode array for extracellular recording of the neural interface system. Manufacturing Technology Today, 21(1-2), 3–20. Retrieved from https://mtt.cmti.res.in/index.php/journal/article/view/22