The effect of different cross-sectional fiber of the fiber-reinforced composite on prediction of elastic modulus in ansys
Keywords:
Polymer Composites, Volume Fraction, Elastic Modulus, Different Cross-SectionsAbstract
This work aims to predict the elastic modulus of the fiber-reinforced polymer composites. A representative volume element (RVE) of size 420x420x420 micron has been created in Solidworks with 10%, 17%, 27%, 40% and 54% of fiber volume. The fiber of circular, square and hexagonal cross-section has been considered in this analysis. The symmetric boundary conditions have been applied to the representative volume element. It has been observed from the ANSYS that the results are not exactly similar to the rule of mixture. The results are varying with a change in the cross-section of the fiber. It is noticed that the elastic modulus is increased when the cross-section changes from circular to square to a hexagon with all said fiber volume. It is attributed due to increase in fiber-matrix surface area and the adhesion. Surprisingly it observed that in hexagonal and square fiber cross section cases the elastic modulus has decreased after 40% of volume fraction.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.