Prediction of dynamic parameters in turning of aluminum metal matrix nano composite by using constitutive models and FEA
Keywords:
Dynamic Parameters, AMMNC, Oxley’s Model, JC ModelAbstract
The present investigation mainly focused on prediction of cutting parameters in turning of aluminum metal matrix nanocomposite (AMMNC) by using constitutive models based on experimental values. The composite is prepared by reinforcing the multiwall carbon nanotubes (wt. % 2) with aluminum 7075 using stir casting method. The turning experiments are conducted on work material according to Taguchi experimental design (L16) for different speed, feed and depth of cut combinations and the output responses cutting force, thrust force and temperatures are recorded. Afterward, the dynamic parameters such as strain, strain rate, temperature and tool chip interfacial friction are calculated using Oxley’s model based on orthogonal experimental values and flow stress is determined by JC model using the values obtained from Oxley’s model. Finally, FEM simulations have been performed using 2D-Deform software. The flow stress, temperature, and tool chip interfacial friction are obtained from 2D-Deform software, which is compared with the results obtained from constitutive models and found that comparison is satisfactory.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.