Heat treatment of plasma sprayed tricalcium phosphate coatings deposited on substrate Ti-6Al-4V ELI
DOI:
https://doi.org/10.58368/MTT.22.3.2023.20-25Keywords:
Tricalcium Phosphate, Atmospheric Plasma Spraying Process, Heat Treatment, XRD, FESEMAbstract
Micron-sized spray-dried tricalcium phosphate (TCP) powder has been deposited successfully on the substrate of Ti-6Al-4V ELI alloy through an atmospheric plasma spraying process. Further, heat treatment of the deposited coating is carried out at a temperature of 600 ℃ for the holding time duration of 2 h in a muffle furnace. Phase identification of the as-deposited and post heat-treated TCP coatings is analyzed through an X-ray diffractometer (XRD). The top morphology and microstructure of both coatings are examined with the help of the field emission scanning electron microscope (FESEM). The porosity and micro-crack are found tobe reduced by heat treatment. Fully molten particles are noticed to be dominant on the top surface of the coating obtained after performing heat treatment. The transformation of secondary phases, namely tetra calcium phosphate (TTCP) and calcium oxide, into stable tricalcium phosphate is achieved by heat treatment.
Metrics
References
Bai, X., More, K., Rouleau, C. M., &Rabiei, A. (2010). Functionally graded hydroxyapatite coatings doped with antibacterial components. ActaBiomaterialia, 6(6), 2264-2273. https://doi. org/10.1016/j.actbio.2009.12.002
Chen, X., Ji, G., Bai, X., Yao, H., Chen, Q., & Zou, Y. (2018).Microstructures and Properties of Cold Spray Nanostructured HA Coatings.Journal of Thermal Spray Technology, 27(8), 1344-1355. https://doi.org/10.1007/s11666-018-0776-1
Farnoush, H., Aldıç, G., &Çimenoğlu, H. (2015).Functionally graded HA–TiO2 nanostructured composite coating on Ti–6Al–4V substrate via electrophoretic deposition.Surface and Coatings Technology, 265, 7-15. https://doi. org/10.1016/j.surfcoat.2015.01.069
Gligorijević, B. R., Vilotijević, M., Šćepanović, M., Vidović, D., &Radović, N. A. (2016).Surface structural heterogeneity of high power plasma-sprayed hydroxyapatite coatings.Journal of Alloys and Compounds, 687, 421-430. https:// doi.org/10.1016/j.jallcom.2016.06.163
Hussain, S., &Sabiruddin, K. (2021a). Synthesis of eggshell based hydroxyapatite using hydrothermal method. IOP Conference Series: Materials Science and Engineering, 1189(1), 012024.https://doi.org/10.1088/1757-899x/ 1189/1/012024
Hussain, S., &Sabiruddin, K. (2021b).Effect of heat treatment on the synthesis of hydroxyapatite from Indian clam seashell by hydrothermal method.Ceramics International, 47(21), 29660-29669. https://doi.org/10.1016/j. ceramint.2021.07.137
Hussain, S., Shah, Z. A., Sabiruddin, K., &Keshri, A. K. (2023). Characterization and tribological behaviour of Indian clam seashell-derived hydroxyapatite coating applied on titanium alloy by plasma spray technique. Journal of the Mechanical Behavior of Biomedical Materials, 137, 105550. https://doi.org/10.1016/j.jmbbm. 2022.105550
Hussain, S., Sharma, M., Sharma, V., Brahmane, S., &Sabiruddin, K. (2022). Effect of Ni-5Al Addition on the Properties of BaAl2O4-Based Coating Deposited with a Novel Explosive Spray Coating Technique. Journal of Thermal Spray Technology. https://doi.org/10.1007/s11666- 022-01492-z
Jafari, H., Hessam, H., Shahri, S. M. G., Assadian, M., Shairazifard, S. H. P., & Idris, M. H. (2016). Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy. Journal of Materials Engineering and Performance, 25(3), 901-909. https://doi. org/10.1007/s11665-016-1944-4
Li, H., Khor, K. A., &Cheang, P. (2002).Properties of heat-treated calcium phosphate coatings deposited by high-velocity oxy-fuel (HVOF) spray.Biomaterials, 23(10), 2105-2112. https:// doi.org/10.1016/S0142-9612(01)00326-X
Mejias, A., Candidato, R. T., Pawłowski, L., &Chicot, D. (2016). Mechanical properties by instrumented indentation of solution precursor plasma sprayed hydroxyapatite coatings: Analysis of microstructural effect. Surface and Coatings Technology, 298, 93-102. https://doi. org/10.1016/j.surfcoat.2016.04.028
Morks, M. F. (2008). Fabrication and characterization of plasma-sprayed HA / SiO2 coatings for biomedical application.Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 105-111. https://doi.org/10.1016/j.jmbbm.2007.04.003
Nelea, V., Ristoscu, C., Chiritescu, C., Ghica, C., Mihailescu, I. N., Pelletier, H., Mille, P., & Cornet, A. (2000). Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2.5Fe substrates with and without buffer layers. Applied Surface Science, 168(1-4), 127-131. https://doi.org/10.1016/ S0169-4332(00)00616-4
Pei, L., Zhang, B., Luo, H., Wu, X., Li, G., Sheng, H., & Zhang, L. (2019). Electrodeposition of ZnONanoprism-Zn substituted hydroxyapatite duplex layer coating for carbon fiber. Ceramics International, 45(11), 14278-14286. https://doi. org/10.1016/j.ceramint.2019.04.137
Surmeneva, M. A., Tyurin, A. I., Mukhametkaliyev, T. M., Pirozhkova, T. S., Shuvarin, I. A., Syrtanov, M. S., &Surmenev, R. A. (2015). Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 46, 127-136. https:// doi.org/10.1016/j.jmbbm.2015.02.025
Vahabzadeh, S., Roy, M., Bandyopadhyay, A., & Bose, S. (2015). Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. ActaBiomaterialia, 17, 47-55. https://doi. org/10.1016/j.actbio.2015.01.022
Xu, H., Geng, X., Liu, G., Xiao, J., Li, D., Zhang, Y., Zhu, P., & Zhang, C. (2016).Deposition, nanostructure and phase composition of suspension plasma-sprayed hydroxyapatite coatings.Ceramics International, 42(7), 8684-8690. https://doi. org/10.1016/j.ceramint.2016.02.102
Yao, H. L., Ji, G. C., Chen, Q. Y., Bai, X. B., Zou, Y. L., & Wang, H. T. (2018). Microstructures and Properties of Warm-Sprayed Carbonated Hydroxyapatite Coatings.Journal of Thermal Spray Technology, 27(6), 924-937. https://doi. org/10.1007/s11666-018-0735-x
Yuan, Q., Qin, C., Wu, J., Xu, A., Zhang, Z., Liao, J., Lin, S., Ren, X., & Zhang, P. (2016).Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates.Materials Chemistry and Physics, 182, 365-371. https:// doi.org/10.1016/j.matchemphys.2016.07.044
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.