The effects of silicon oxide as an additive with a cotton seed oil biodiesel blend in a CI engine
Keywords:
Cotton Seed Oil Methyl Ester, Silicon Oxide, Performance, Emission, CombustionAbstract
Experimental investigation was carried out to study the combustion, engine performance and emission characteristics of a single cylinder, naturally aspirated, air cooled, constant speed compression ignition engine, fuelled with five modified fuel blends, Diesel, B20 (Diesel–cotton seed oil biodiesel) and Diesel– cotton seed oil biodiesel –with silicon oxide as a Nano additive with three different concentration 50ppm, 75ppm, 100ppm, and the results are compared with those of neat diesel. The Nano additive was mixed in the fuel blend along with a suitable surfactant by means of an ultrasonicator, to achieve stable suspension. The properties of B20, B20 + silicon oxide fuel blend are changed due to the mixing of cotton seed biodiesel and the incorporation of the with silicon oxide Nano additives. Some of the measured properties are compared with those of neat diesel, and presented. The cylinder pressure during the combustion and the heat release rate, are higher in the B20 + with silicon oxide 100-ppm fuel blend, compared to neat diesel. Further, the exhaust gas temperature is reduced in the case of the B20 with silicon oxide 100ppm of fuel blend, which shows that higher temperature difference prevailing during the expansion stroke could be the major reason for the higher brake thermal efficiency in the case of B20 with silicon oxide 100ppm of fuel blend. The presence of oxygen in the Cotton seed biodiesel and the better mixing capabilities of the nanoparticles, reduce the CO and UBHC appreciably, though there is a small reduce in NOx at full load condition
Metrics
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in Manufacturing Technology Today (MTT) Journal are held by the Publisher. Central Manufacturing Technology Institute (CMTI) as a publisher requires its authors to transfer the copyright prior to publication. This will permit CMTI to reproduce, publish, distribute, and archive the article in print and electronic form and also to defend against any improper use of the article.