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Circular saws are thin and hence they vibrate during cutting. Vibrations get imprinted  
on the side walls of the part being cut, with each tooth leaving its own imprint. 
When there is a phase shift of vibrations between two successive teeth, regenerative 
instabilities can occur. However, since the flank face of the tooth also rubs the  
vibration marks on the side wall, there can also be process-induced damping. Such 
damping is known to improve the stability of low speed cutting processes. Since  
metal circular sawing is a low-speed process, it is the aim of this paper to characterize 
the role of process damping, if any, on regenerative instabilities using an analytical 
model. The saw is modelled as an annular disc constrained by springs representing 
guides. The Muller method with deflation is used to solve the governing equations  
of motion. Model-based analysis suggests that process damping indeed plays a 
stabilizing role.
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1. Introduction

A rotating saw is fed into a workpiece to cut parts 
to the required lengths in circular sawing. Saws 
are usually kept thin to minimise kerf losses. Due 
to their thinness, they vibrate and are susceptible 
to critical speed-related instabilities and process 
induced regenerative instabilities. These 
instabilities are detrimental to the saw, the part, 
and the machine. These instabilities occur even 
when the saw’s out-of-plane motion is constrained 
by guides (Hutton et al., 1986; Lehmann & Hutton, 
1988; Singhania et al., 2019; Singhania et al., 
2022; Tian & Hutton, 1999; Tian & Hutton, 2001;  
Singhania & Law, 2021). Critical speeds occur 
when the saw’s rotational speed matches one 
of the many backward travelling wave’s natural 
frequency as it tends to become stationary (Hutton 
et al., 1986). Regenerative instabilities occur  
when there is an unfavourable phase shift of 
vibration marks left on the side walls of the part 
being cut between two successive teeth (Tian & 
Hutton, 2001;  Singhania & Law, 2021). For metal 
sawing, regenerative instabilities occur at speeds 
lower than critical (Singhania & Law, 2021). As 

such, this paper is only concerned with instabilities 
of the regenerative kind.  

Regenerative instabilities in sawing are governed 
only by the lateral regenerative forces (Tian & 
Hutton, 2001;  Singhania & Law, 2021), and not by 
the in-plane radial and/or tangential forces as they 
are in other milling processes (Altintas & Budak, 
1995). Speed-regions of instabilities are further 
influenced by changing engagement conditions 
and by changing number of teeth in cut as the saw 
enters and exits the part it is cutting. Moreover, 
the characteristics of the workpiece material being 
cut also significantly influence such instabilities. 
This behaviour has been characterized for saws 
with and without guides (Tian & Hutton, 2001; 
Singhania & Law, 2021). 

Regenerative instabilities are also influenced by 
the rubbing action of the flank face interacting  
with the vibration marks left on the surface 
being cut. This interaction is described as process  
damping (Wallace & Andrew, 1965; Eynian, 
2010; Gurdal et al., 2016). This process-induced  
interaction is governed by the cutting tooth’s 
geometry, by the cutting speed, and by the 
frequency and amplitude of vibrations left on the 
surface. Process damping has been reported to 
improve the stability margin in turning and milling 
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processes damping (Wallace & Andrew, 1965; 
Eynian, 2010; Gurdal et al., 2016), especially at low 
speeds. 

Since metal circular sawing is a low-speed process, 
and since the role of process damping in sawing 
has not been investigated and/or reported yet, it 
is the explicit aim of this paper to characterize the 
role of process damping, if any, on regenerative 
instabilities. This is also the primary new technical 
advancement of this paper to the state-of-the-art.  

Since instabilities are detrimental, and since these 
are governed by the dynamics of the saw, by 
the number of teeth, by the geometry of those 
teeth, by the workpiece material being cut, and 
by the number, location, and size of guides, the 
experimental route to characterize the role of 
process damping is prohibitive. This paper will 
hence present systematic model-based analysis. 
The analytical model for the saw is a thin circular 
disc laterally restricted by guides modelled as  
point springs is presented in Section 2 of this  
paper. The model builds on our earlier reports 
(Singhania et al., 2019; Singhania et al., 2022; 
Singhania & Law, 2021), and incorporates the 
influence of lateral regenerative forces together 
with the process damping forces. The Muller 
method with deflation (Mathews, 1992) is used to 
solve the resulting governing equations of motion. 
Section 3 discusses the influence of process 
damping. Main conclusions follow.

2. Model for the Guided Saw Subjected to 
Regenerative and Process Damping Forces

The saw is modelled as an annular disc rotating 
counterclockwise with an angular velocity Ω with 
a clamped inner radius 𝑏, free outer radius �, and 
thickness �. As shown in Fig. 1, the saw is cutting 
a solid bar. The instantaneous entry angle of the 
saw entering the bar is �st. The exit angle is �ex. 
These angles change as the cut progresses. The 
saw is laterally constrained by distributed guides 
positioned symmetrically with respect to the 
cutting zone. These guides are assumed to be fixed 
independently on the machine frame. Usually, 
these guides are lubricated. Though the stiffness 
of these distributed guides is also distributed, for 
analysis herein we model it as a lumped point 
spring, characteristics of which are a function of the 
fluid’s stiffness and the clearance. These springs  
are assumed placed at a radial location 𝒓m and an 
angular location �m at the geometrical centre of  
the guide pad. Other modelling assumptions 
remain as those that this report builds on  

(Singhania et al., 2019; Singhania et al., 2022; 
Singhania & Law, 2021).

We additionally assume that the only cutting  
forces of interest are the lateral regenerative 
cutting forces (fc(t)) and hence ignore any in-plane 
radial and tangential forces. As shown in the 
section BB’ in the inset in Fig. 1, the regenerative 
effect is associated with an extra lateral cutting 
area between two successive teeth associated  
with the transverse response w(𝒓o, 𝛾j, t), of the 
current tooth (the jth tooth) and the transverse 
response   w(𝒓o, 𝛾j, t-T), of the preceding tooth 
(the (j-1)th tooth) at a given location (𝒓o, 𝛾j) of 
the workpiece (Tian & Hutton, 2001; Singhania &  
Law, 2021). T=2π/ΩNt  is the tooth passing period, 
i.e., the interval between two consecutive teeth 
coming into cut. In addition to these regenerative 
forces, there are also forces due to the guide 
modelled as a spring, and additional forces due to 
the process damping phenomena.

With these forces acting on the system the 
governing differential equation of the rotating 
saw in terms of its transverse displacement,  
(𝑟,𝛾,𝑡) subjected to all three forces, 𝑓(𝑟,𝛾,𝑡) in the 
stationary frame of reference can be shown to be:

  

                   ......................(1)

 
wherein the comma-subscript notation signifies 
partial differentiation, 𝜌 is the mass density, � is
the saw’s thickness,  is the flexural rigidity,
 wherein E is the Young’s modulus, 𝜈 is the Poisson’s 
ratio, 𝐷∗=𝜂𝐷  is the internal damping in the saw, 
wherein 𝜂 is the Kelvin-Voigt damping parameter,  

Fig. 1. Schematic showing lateral regenerative cutting 
forces on a circular saw constrained with guides 

modelled as point springs.
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𝛻4 is the bi-harmonic operator, and 𝜎𝑟, 𝜎𝛾,  are the 
in-plane stresses due to rotation. 

𝑓(𝑟,𝛾,𝑡) in Eq. (1) is the point force on the saw 
that is comprised of forces due to the lubricated 
guides 𝑓𝑔(𝑟,𝛾,𝑡), the lateral regenerative cutting 
forces 𝑓𝑐(𝑟,𝛾,𝑡), and the process damping forces  
𝑓𝑝(𝑟,𝛾,𝑡). Of these, the guide forces take the  
form of: 

 

                                                              ......................(2)

wherein 𝑘𝑓𝑗 is the stiffness between the 𝑗 𝑡ℎ guide  
pad pair and the saw, respectively, which is  
modelled as:  wherein 𝐸𝑓𝑗  and ℎ𝑓𝑗  are the

stiffness constant and the clearance between the  
𝑗 𝑡ℎ guide pad pair and the saw, respectively. 𝐽 in  
Eq. (2) is the total number of point springs, and  
𝛿(.) is the Dirac delta function.

The regenerative forces take the form of: 

  
                                                                ....................(3)

wherein 𝑁𝑡 is the total number of teeth in cut, 
and  𝐾𝑟 is an empirically estimated cutting 
force coefficient that is usually a function of the 
saw tooth’s geometry, the workpiece material 
being cut, and the cutting conditions (Altintas 
& Budak, 1995). 𝑔(𝛾𝑗 )  is a screening function to 
determine if the tooth is in cut or not, i.e., 𝑔(𝛾𝑗 )= 
1, when  𝛾𝑠𝑡<𝛾𝑗 <𝛾𝑒𝑥, and 𝑔(𝛾𝑗 )=0 otherwise. 
The instantaneous tooth position 𝛾𝑗   is given by: 
𝛾𝑗 =𝛾𝑠𝑡+𝛺𝑡+(𝑗 −1)𝛾𝑝,(𝛾𝑖=𝛾𝑠𝑡 when 𝑡=0;𝛾𝑝  is the 
angular pitch). 

The process damping forces take the form of: 

 
                                                                ....................(4)

wherein 𝐶𝑖 is also an process damping coefficient 
that is empirically determined and depends on 
the material being cut, the cutting speed, the  
saw tooth’s geometry, potential wear of that tool, 
and vibration frequency and amplitudes (Wallace 
& Andrew, 1965; Eynian, 2010; Gurdal et al., 
2016).  𝑤̃,𝑡(𝑟,𝛾,𝑡) within Eq. (4) is the vibrational 
velocity of saw in the transverse direction, and   
𝑆 is width of cut at minor cutting edge as shown in 
the schematic in Fig.2. 

The governing equation is approximately solved  
by assuming a solution of the form (Tian &  
Hutton, 2001):

 

                                                                ....................(5)

wherein 𝑀 and 𝑁 represent the number of nodal 
circles and nodal diameters, respectively, 𝑟0 is the 
radial location of the clamped saw’s outer free 
edge and 𝑅𝑚𝑛(𝑟) satisfies the boundary conditions 
of the saw being clamped at its inner section and 
free at its periphery, and  𝐶𝑚𝑛(𝑡) and 𝑆𝑚𝑛(𝑡)  are 
variable coefficients. 

Substituting Eq. (2) to Eq. (5) in the governing 
equation i.e., Eq. (1) and applying the Galerkin’s 
procedure results in an equation of motion of the 
form:

 
                                                              .....................(6)

wherein e−𝑇𝐷{𝒙(t)}={𝒙(t−T)}, and {𝒙(t)} is an 
array of {𝐶𝑚𝑛(t) 𝑆𝑚𝑛(t)}𝑇, and [M], [G], and [K] are 
mass, gyroscopic and/or damping, and stiffness 
matrices, respectively. [A(t)] within Eq. (6) is a 
time periodic varying matrix associated with the 
lateral regenerative cutting forces.

To solve the stability problem for the time-varying 
periodic system of differential equations, the 
basic Fourier series method is used. With periodic 
coefficients, the solution to Eq. (6) can be assumed 
of as a Fourier series:

 
                                                              .....................(7)

wherein {b𝟎}, {𝒂𝒌} and {b𝒌} are time-invariant 
coefficient vectors, and 𝜆 is the characteristic 

Fig. 2. Schematic of process damping force acting on a 
tooth along the lateral direction.
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variable of the system. Since [A(𝒕)] is also periodic, 
as proposed in (Altintas & Budak, 1995) for the 
case of a regenerative model for milling processes, 
it can be expressed in Fourier series form in this 
case as well:

                                                              .....................(8)

wherein [B𝟎],[A𝒌] and [B𝒌]  are defined as in (Tian & 
Hutton, 2001; Singhania & Law, 2021). 

Substituting Eq. (7) and Eq. (8) into Eq. (6) and using 
the zeroth order approximation results in:

 
                                                              .....................(9)

The resulting eigenvalues are complex valued, 
i.e.,  wherein the imaginary part corresponds to 
the natural frequency of the system and real part 
represent the growth and/or decay. Since Eq. (9) 
is a complex nonlinear equation, hence, Muller’s 
optimization algorithm (Mathews, 1992) with 
deflation gives the system’s eigenvalues for every 
speed of interest. 

Having discussed the governing equations of 
motion and methods to solve them, we next 
present model-based analysis to characterize 
the role of process damping on the regenerative 
instabilities of a metal circular sawing process. 

3. Numerical Analysis and Discussion

This section discusses how the introduction of 
point guides and process-induced damping affects 
instability. For instantaneous cutting under a 
constant engagement condition, the instabilities  
of point guides and unguided saws cutting a 
specified material with a constant cutting force 
coefficient are compared in Section 3.1. This is 
followed by a discussion in Section 3.2 on how 
process damping influences instabilities for a 
guided saw configuration.

All analyses reported herein are for a multimode 
case, i.e., (M,N) = (0,4), with a circular saw with the 
following material and geometry: ρ= 7850 Kg/m3, 
E=210 GPa, 𝜈= 0.3, a= 142.5 mm, b=42.5 mm, h=2 
mm, hf=0.15 mm,η=10−6 sec, Nt= 60. We assume 
that the saw is constrained with two oil-lubricated 
guides. This is in line with industrial praxis. These 
oil-lubricated guides are modelled as point 

springs, with their stiffness parameters taken from 
(Singhania et al., 2022). The guides are assumed 
placed at a radial location of rm=125mm, and with 
an angular orientation of two guides,  �m1=250 
and �m2=3350 as shown in Fig. 1. Moreover, for 
analysis herein, we assume the saw is cutting a bar 
of 76 mm diameter with an instantaneous entry 
angle of �st=3430, and an exit angle of �ex =170, 
measured along the counterclockwise direction. 
Since influence of changing engagements, albeit  
without process damping, have already been 
discussed in (Singhania & Law, 2021), results herein 
are limited to cutting with only one engagement 
condition. 

3.1. Regenerative instabilities of the guided 
circular saw

We first compare the stability of a saw that is 
constrained by point guides to one that is not. 
We presently ignore the role of process damping  
and discuss its contribution separately in Section 
3.2. Regenerative forces are assumed acting  
on the saw that is guided and not. We assume 
that the material being cut has a cutting force 
coefficient of Kr = 1000 N/m. Fig. shows the real 
and imaginary parts of the eigenvalues for this 
system. These characterize the dynamics and  
the stability. Results are shown changing with  
the tooth passing frequency, and not speed. 
However, since we assume 60 teeth on the 
saw, the tooth passing frequency is the same as  
the rotational speed in rpm. Since metal sawing  
is a low-speed operation, results in Fig. 3 are 
limited to the low tooth passing frequency (speed) 
range of interest.

Fig. 3. Comparison of frequency-speed characteristics 
of saw with and without a guide  

(a) Natural frequency, (b) Real part of the eigenvalue.
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As is evident from Fig. 3, the real and imaginary 
parts of the eigenvalues for the guided saw are 
different than the case of the saw with no guides. 
Hence, guides clearly play a role in the frequency-
speed characteristics. Guides stiffen the response, 
and as such the natural frequencies (see imaginary 
part in Fig. 3(a)) are higher than the unguided 
case. The slopes of the backward waves are also 
less steep for the guided case, suggesting that the 
critical speeds occur at higher speeds for a saw that 
is guided as opposed to a saw that is not. However, 
the critical speed occurs at speeds beyond the 
range of interest. Within the low-speed range of 
interest, it is the real part of the eigenvalue that 
governs stability of the system, and not critical 
speeds. 

The real parts, as is evident from Fig. 3(b), for 
the unguided saw are positive over the full speed 
range of interest. Since the real part being positive 
suggests that the response grows unbounded, 
it suggests instability. Different modes become 
unstable at different speed regions. However, 
as is also evident from Fig. 3(b), guides play a 
stabilizing role. Though the real part is not negative 
throughout the speed region of interest, there are 
several speed regimes where for the unguided 
saw, the system was unstable, but for the guided 
saw, the system is stable. Guides also have a role 
in reducing the severity of the growth. These 
results suggest that by tuning the stiffness of the 
guide along with its size and location relative to the 
cutting zone, it might be possible to find pockets of 
stability within which sawing can be done.   
 
3.2. Regenerative instabilities of the guided  

   circular saw with process damping

Results herein show how instabilities are 
influenced by process damping for a guided saw. 
Results in Fig. 4 are limited to showing only the 
real part of the eigenvalues since those are the 
ones limiting stability and not the imaginary parts 
which relate to the critical speed, which even 
with the inclusion of process damping occurs at  
speeds higher than the tooth passing frequency 
(speed) of interest. Results in Fig. 4 are generated 
assuming that Kr = 1000 N/m, and that the process 
damping coefficient, 𝐶𝑖 =10000 N/m, and that the 
width of the flank face in contact is 𝑆 =0.15 mm. 

With the inclusion of process damping together 
with regenerative effects in the analysis, the 
real part becomes negative – see Fig. 4. This 
confirms that even in sawing, like other machining  
processes, process damping can stabilize the 

process at low speeds. And, since metal sawing 
is inherently a low-speed operation, and since 
contact of the worn flank face with the vibration 
marks left on the side walls of the surface being 
generated are also inevitable, process-induced 
damping can play a beneficial role. 

4. Conclusion

This paper, for the first time, characterized the role 
of process damping together with regenerative 
forces on the stability of guided metal circular 
sawing processes. Model-based analysis revealed 
that process-induced damping significantly 
reduces the intensity of unstable vibrations and 
helps in stabilizing the guided saws. While further 
research is needed to experimentally validate the 
model-based observations, our results can still be 
used to guide the design of stable guided metal 
sawing processes for industrial applications. For 
instance, since process damping is a function of 
the saw tooth’s geometry, proposed models can 
characterize how a change in tooth geometry can 
help stabilize an otherwise unstable process. 
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