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This paper presents an analytical model to characterize the role of an impact  
damper in suppressing vibrations of slender boring bars that are used in deep  
hole boring processes. The boring bar is modelled as a Euler-Bernoulli beam  
that interacts with a ring impact damper through a spring and damper combine. 
Parametric analysis suggests that smaller gaps in between the bar and the  
damper result in higher reduction in the vibration response. Analysis also suggests 
that for maximum vibration suppressions the damper’s stiffness should be  
less than that of the bar, and its damping should be greater. Though the vibration 
suppression capacity of this impact damped boring bar is found slightly wanting  
when compared to a boring bar damped with an optimally tuned mass damper,  
model-based analysis as is presented herein is new and generalized and can  
hence guide further design and development of optimal impact damped boring bars. 
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1. Introduction

The boring of deep holes requires the use of 
slender boring bars. Slenderness reduces the 
bar’s bending stiffness and makes it vulnerable 
to vibrations during cutting. These vibrations may 
grow and result in chatter. These process-induced 
large amplitude chatter vibrations can damage 
tools and parts of the machine and can destroy 
part surface quality. 

Vibrations of boring bars are usually suppressed 
by integrating tuned mass dampers within them 
(Munoa et al., 2016; Yadav et al., 2020). However, 
if/when the dynamics of the boring bar deviate 
with speed (Patel et al., 2022) and/or boundary 
conditions (Thekkepat et al., 2021), tuning becomes 
non-trivial. In such cases, other hybrid solutions 
using eddy current dampers in conjunction  
with a detuned absorber are preferred (Patel, 
Yadav et al., 2022). Since optimal tuning is difficult, 
as is making hybrid dampers, this paper instead 
explores the vibration suppression potential of 
boring bars using an impact damper.

Impact dampers function by dissipating energy 
due to collisions and an exchange of momentum 
between the object to be damped and the mass 

damper. Collisions happen when the object or the 
mass move more than the gap between them. 
Before collision, the object, and the mass move in 
opposite directions. And, after collision, the mass 
reverses direction and the velocity of the main 
system is attenuated due to its relatively larger 
inertia (Ibrahim, 2009). 

Despite their simple construction and working 
principle, the use of impact dampers in vibration 
suppression of cutting tools is limited. The notable 
exceptions are the works (Thomas et al., 1973) 
and (Ema & Marui, 2000). Though seminal, these 
reports being experimental could not completely 
characterize the role of the gap between the 
impacting mass and the main system, or the role 
of the coefficient of restitution, or the role of 
impacting interface characteristics, or the role 
of the mass-ratio, stiffness, and damping of the 
two systems. Such analysis is only possible using 
analytical and/or numerical models. Presenting 
such an analytical model that allows for systematic 
parametric analysis to characterize which 
parameters govern vibration suppression of the 
boring bar is the main objective and new technical 
contribution of this paper. 

Though there exist classical analytical models 
that help understand the behaviour of an impact 
damper (Masri, 1970), those modelled the  
impact damper and the primary system as lumped 
masses. Since the boring bar is akin to a slender 
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cantilevered beam, a more appropriate method 
to model it would be to approximate it as a Euler-
Bernoulli beam. Doing so would overcome the 
limitation of assuming the bar as a lumped mass 
that would presume placement of the impact 
damper at the free end which is also the cutting 
end. 

Models for impact damping for cantilevered  
beams do exist. In (Cheng & Wang, 2003), free 
vibrations of a cantilevered beam with an impact 
damper attached outside of it were investigated. 
Impacting interfaces were modelled as a spring 
and a viscous damper system. In other related work 
reported in (Geng et al., 2020), impacts between a 
cantilevered beam and the impacting mass were 
modelled using Hertzian contact mechanics. 

This paper will build on these prior models (Cheng 
& Wang, 2003; Geng et al., 2020) to develop one 
for a boring bar with an impact damper. However, 
since our application of interest is different than 
earlier reports, suitable modifications are made to 
the model as discussed in Section 2 of this paper. 
Section 3 presents parametric analysis to discuss 
the role of the gap between the boring bar and the 
impact damper and to understand the role of the 
mass, stiffness, and damping ratios between the 
two systems. We benchmarked our results with a 
boring bar integrated with a tuned absorber. Main 
conclusions follow. 

2. Model of a Boring Bar with an Impact 
Damper

This section first discusses a possible design of a 
boring bar with an impact damper. We follow this 
by presenting the governing equations of motion 
for the system.

2.1. Possible design of a boring bar with an   
impact damper

A boring bar with diameter D and length L is 
assumed to be impacting a ring impact damper 
with mass m positioned at a distance of zd from 
the fixed end as is shown in Fig. 1(a). The ring is 
in turn assumed to be placed in an outer housing 
that is fixed. The support stiffness of the ring in  
its housing is presently ignored. Though the  
impact damper should be ideally housed within 
the bar such as to not reduce the bar's effective 
overhang, for the preliminary investigations  
herein, the damper is assumed to be outside the 
bar. The gap between the bar and the ring is d – as 
shown in Fig. 1(b). The interface between the ring 

and the bar is assumed to behave like a spring (kd) 
and damper (cd) combine. This design is inspired 
by the design concept in (Cheng & Wang, 2003). 
Since the bar is more flexible in its radial direction 
than along its axis (Yadav et al., 2020), impacts are 
assumed to take place only in the X direction, and 
as such the stiffness and damping at the interface 
are also assumed only active in the X direction. 
The bar is assumed to be linear, symmetric, and 
isotropic. The boring bar vibrates with amplitude 
W when excited by the cutting process, and when 
its motion exceeds the gap, i.e., when d≤W(zd,t)-
u(t)≤0, wherein u is the motion of the mass m, it 
will impact the ring’s housing. This collision and 
exchange of momentum through the interface 
will result in dissipation of energy of the boring 
bar which in turn will reduce its vibration. The 
equations governing this system are described 
next. 

2.2. Governing equations of motion

The boring bar is modelled as a cantilevered 
Euler-Bernoulli beam, and the impact damper 
as a lumped mass. To obtain the governing 
equations of motion, we use notions of kinetic and  
potential energies of the system along with work 
done by the external and the damping force on the 
system. We then apply the extended Hamilton’s 
principle (Hagedorn & Dasgupta, 2007). Though  
the mechanics of impact are complex and are 
governed by nonlinear equations, since we model 
energy dissipation from impacting interfaces 
between the boring bar and the ring impact damper 
as a spring-damper system, we obtain piecewise 
linear governing equations as discussed below. 

Fig. 1. (a) Possible design of an impact damped  
boring bar, (b) Plan showing the interface  

between the two systems. 
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There are two situations; the first corresponds to 
no impact, and the second corresponds to when 
impact takes place. There are two sets of equations 
for the two cases.    

For the first situation, i.e., when there is no impact, 
i.e., when 0<W(zd,t)-u(t)<d, the beam and the  
ring damper move freely, and the governing 
equations become:

  ...(1)

                                                  ...................(2)

wherein ρ,A,L,C,E and I are mass density, cross-
sectional area, length, damping coefficient, elastic 
modulus, and area moment of inertia of beam, 
respectively. f(t) is external force on beam acting  
at the free end, i.e., the cutting end. δ is a Dirac  
delta function. The first, second and third terms 
on the left side of the Eq. (1) denote the kinetic, 
damping, and potential energies of the beam, 
respectively. Term on the left side in Eq. (2) 
represents the kinetic energy of ring damper.

For the second case, i.e., when d≤W(zd,t)-u(t)≤0, 
the beam impacts the damper, and the governing 
equations become:

 

   .......(3)

 

 

  ........(4)

wherein the first three terms in Eq. (3) have the 
same meaning as they did in Eq. (1), and the third 
and fourth terms in Eq. (3) denotes the potential  
and damping energy offered by the spring and 
damper system that characterize the interface 
between the beam and the ring. Since the spring 
and damper will apply equal and opposite reactions 
on the ring, the damper will have potential and 
damping energies. These are described in the 
second and third terms in Eq. (4)  

The first term in Eq. (4) remains that of the kinetic 
energy of the damper. 

Displacement of the beam is obtained by 
superposing all modes of the beam as (Hagedorn 
& Dasgupta, 2007):

                         ..................(5)

wherein i represents the number of modes, qi 
(t) are the time-dependent displacements, and  
ψi (z) are mode shapes of the cantilever beam, 
which are given as:

 
 

   .........(6)

wherein ηi is 1.8751⁄L for the first bending  
mode of vibration. Since the first bending mode of 
the boring bar is usually the most flexible (Yadav 
et al., 2020), we reduce Eqs. (5-6) by considering 
i=1. W(z,t) from Eq. (5) is then substituted into  
Eqs. (1-4) and the new equations are multiplied 
by ψj (z) on both sides and integrated over the 
length. Using orthogonal properties (Hagedorn 
& Dasgupta, 2007) and rearranging, we can write 
modified Eqs. (1-2) and Eqs. (3-4) in matrix form 
as follows:

 
                                                                      ..............(7)

 
                                                                      ..............(8)

wherein 

Having discussed the procedures to obtain the 
governing equations of motions, we use these to 
systematically characterize the role of the gap,  
and the mass-ratio, stiffness, and damping of the 
two systems.

3. Parametric Analysis with Free and Forced 
Response

This section discusses the free and forced  
vibration response of the beam for different gaps 
and for different ratios of mass, stiffness, and 
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damping between the two systems. For analysis 
herein, the impact damper is assumed attached  
at the middle (zd=L⁄2) of the boring bar. Placing  
it any nearer the cutting edge will reduce the 
working length. Displacements are obtained as 
discussed above, and to facilitate meaningful 
comparisons, the root mean square amplitude of 
the beam at its free end is defined as:

       ...............(9)

wherein T is the observation period.

3.1. Free vibration analysis

The free vibration response of the boring bar is 
shown in Fig. 2(a) for the representative case of 
the mass-ratio μ, which is defined as the ratio 
of the impacting mass to the modal mass of the 
beam, being 0.1. These results are obtained with 
the parameters of boring bar as listed in Table 1. 
Results shown in Fig. 2(a) are for the case of the 
stiffness (kd) of the interface being less than that 
of the boring bar, and the damping (cd) greater, 
i.e., kd<K; cd>C. Results for different gaps are shown  
and contrasted with the boring bar without a 
damper. An initial displacement of 0.5 mm is  
given to the middle of the boring bar at the 
location of action of the impact damper, and 
the free vibration response is tracked. And as is 
evident, a maximum vibration suppression of  
~76% is achieved for when the gap is the small. 

Since Fig. 2(a) provides only a local picture, we 
present summary results characterized by the 
ARMS for four cases in Fig. 2(b-e). In the first case 
shown in Fig. 2(b), the stiffness (kd)  and damping 
(cd) of the interface are less than that of the  
boring bar, i.e., kd<K; cd<C. In the second case shown 
in Fig. 2(c), kd<K; cd>C. In the third case shown 

in Fig. 2(d), kd>K; cd<C. In the final case shown in  
Fig. 2(e), kd>K; cd>C. For each of these cases, 
analysis is conducted with two different μ and for 
gaps of up to 1 mm. 

As is evident from Fig. 2(b-e) response is consistently 
low for small gaps, except for the case shown 
in Fig. 2(e), in which response decreases with 
increasing gaps. Interestingly, for the cases with 
kd<K, i.e., cases shown in Fig. 2(b-c), the damping 
ratio and/or the mass ratio appear to play no role. 
However, when kd>K, the damping and mass ratios 
both appear to play a role – as is evident from  
Fig. 2(d-e). Of the cases investigated, though the 
ARMS is least for the case with kd<K; cd>C for when 
the gap is low, there could be other scenarios in 
which further suppression might be possible. 
The model proposed facilitates such analysis  
and suggests that the gap and the mass-ratio, 
stiffness, and damping of the two systems do  
indeed play a significant role in the vibration 
suppression potential of the impact damped 
boring bar.     

3.2. Forced vibration analysis

Since the free vibration analysis, in general, 
suggested that vibration suppression with smaller 
gaps is better, for the forced vibration analysis 
herein, only a representative case for the gap 

Fig. 2. (a) Displacement of the beam for 
kd=0.01K,cd=2C, μ=0.1. (b-e) Free response 

characterized by ARMS  for different mass ratios (μ) and 
gap values (d): (b) kd=0.01K,cd=0.5C, (c) kd=0.01K,cd=2C, 

(d) kd=100K,cd=0.5C, (e) kd=100K,cd=2C.

Table 1
Parameters of the boring bar.

Boring bar with a L/D  ratio of 8. M, C, and K 
are for the fist mode

Length, L = 0.2 m Damping ratio, 
ζ = 0.03

Diameter, 
D = 0.025 m

Mass, 
M =0.765 kg

Mass density, 
ρ = 7800 kg/m3

Stiffness, 
K = 5.93 × 106 N/m

Young’s modulus, 
E = 200MPa

Damping, C = 127.8 
N-s/m
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being 0.5 mm is discussed. And like in Section 3.1, 
herein too four cases are discussed: in the first 
case, response for which is shown in Fig. 3(a), kd<K; 
cd<C. In the second case shown in Fig. 3(b), kd<K; 
cd>C. In the third case shown in Fig. 3(c), kd>K; cd<C. 
In the final case shown in Fig. 3(d), kd>K; cd>C. For 
each of these cases, analysis is conducted with  
two levels of μ and with the forcing frequency 
changing in the range around the natural  
frequency of the solid boring bar without the  
impact damper. For analysis herein too, the 
parameters of the boring bar are taken as those 
listed in Table 1. To characterize response, the 
forcing function is assumed to be of the form of  
f(t)=100 sin ωt, wherein ω is excitation frequency. 
The gain of 100 is arbitrary to the analysis. 

As is evident from Fig. 3, the largest reduction 
in the forced vibration response of ~76% over 
the undamped case is achieved for the case 
when kd<K; cd>C, i.e., the case shown in Fig. 3(b). 
Interestingly for this case, the mass ratio appears 
to play no role. And, since the only difference 
between this case and the case shown in Fig. 3(a) 
is that cd<C in Fig. 3(a), it further suggests that  
the stiffness of the interface being less than the 
that of the boring bar also plays no role, and  
just the damping at the interface influences 
response. This is furthermore clear from Fig. 3(c)  
in which cd<C. The shift in the natural frequency in  
this case is only due to the change in stiffness 
and mass ratios. The same reason can explain the  
shifts in in Fig. 3(d). However, in this case too, since 
cd>C, there is an improvement in the vibration 
suppression. Forced response behavior is like that 
observed for free response. And, since the system  
is assumed to be linear, this is not surprising. 
Analysis for different gaps was also conducted, and 

a change in the gap was also found to significantly  
influence response. Those results however are not 
shown for brevity. 

To contextualize our results, we evaluated the 
vibration suppression potential of an optimally 
tuned mass damper integrated with a boring bar 
with parameters as listed in Table. 1. We followed 
the tuning approach in (Yadav et al., 2020), and 
found that for a μ of 0.1, the maximum suppression 
possible was ~88%. Though this is slightly greater 
than what our proposed impact damper can 
achieve, since our model is generalized, it can guide 
further design, development, and improvement. 

4. Conclusion

This paper presented an analytical model for an 
impact damped boring bar. The model facilitated 
parametric analysis to characterize the role of the 
gap between the impact damper and the boring 
bar, and to understand the influence of the ratios 
of the mass, stiffness, and damping between the 
two systems. Our analysis suggested that smaller 
gaps result in better vibration attenuation. Our 
analysis also suggested that when the stiffness 
of the interface between the boring bar and the 
damper was less than that of the boring bar’s, 
it plays no significant role, and that damping  
of the interface when greater than that of the  
boring bar, plays a significant role in vibration 
suppression. Since the impact damper was placed 
outside the boring bar in this preliminary model 
and since that limits the boring bar’s effective 
operating length, future work could focus on 
integrating it within.      
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