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Micron-sized spray-dried tricalcium phosphate (TCP) powder has been deposited 
successfully on the substrate of Ti-6Al-4V ELI alloy through an atmospheric plasma 
spraying process. Further, heat treatment of the deposited coating is carried out  
at a temperature of 600 ℃ for the holding time duration of 2 h in a muffle furnace. 
Phase identification of the as-deposited and post heat-treated TCP coatings is  
analyzed through an X-ray diffractometer (XRD). The top morphology and  
microstructure of both coatings are examined with the help of the field emission 
scanning electron microscope (FESEM). The porosity and micro-crack are found to 
be reduced by heat treatment. Fully molten particles are noticed to be dominant  
on the top surface of the coating obtained after performing heat treatment. The 
transformation of secondary phases, namely tetra calcium phosphate (TTCP) and 
calcium oxide, into stable tricalcium phosphate is achieved by heat treatment. 
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1. Introduction

Tricalcium phosphate (TCP) and hydroxyapatite 
are two well-known bio-ceramic members of the 
calcium phosphate family (Hussain & Sabiruddin, 
2021a, 2021b). Over many years, different 
deposition techniques have been employed to 
coat calcium phosphate-based ceramics powder 
as coatings on metal substrate surfaces in the 
fields of biomedical applications. The atmospheric 
plasma spray (Hussain et al., 2023; Morks, 2008), 
sol-gel deposition (Jafari et al., 2016), sputtering 
deposition (Surmeneva et al., 2015) composition 
and morphology of a radio-frequency (RF, 
electrodeposition (Pei et al., 2019), pulsed laser 
deposition (Nelea et al., 2000), electrophoretic 
deposition (Farnoush et al., 2015), cold spray 
(Chen et al., 2018), spin coating (Yuan et al., 2016), 
warm spray (Yao et al., 2018), ion beam assisted 
deposition (Bai et al., 2010), suspension spray 
(Xu et al., 2016), and thermal spray deposition 
(Gligorijević et al., 2016; Mejias et al., 2016) are 
the examples of such methods. Among these, 
thermal spray processes can offer very high flame 
temperatures to melt the ceramic powder and 

deposit a thick coating. The thermal and kinetic 
energy of the depositing droplets decides the 
properties of the final coating (Vahabzadeh et al., 
2015). In the thermal spray group, atmospheric 
plasma spraying (APS) is considered to be the most 
versatile method for developing calcium phosphate 
coatings. The US Food and Drug Administration 
(FDA) recommended and approved the APS 
method for biomedical applications in view of the 
safety factors. 

One of the potential ways to improve the 
characteristics of the calcium phosphate coating 
is to conduct heat treatment on it. Li et al. (2002) 
carried out the heat treatment on the calcium 
phosphate coatings fabricated by the technique of 
high-velocity oxy-fuel (HVOF) and studied the role 
of the heat treatment process on the characteristics 
of the fabricated coatings. However, the influence 
of heat treatment on the microstructure and 
phases of plasma-sprayed tricalcium phosphate 
coating is rarely studied.

In this study, tricalcium phosphate (TCP) coating 
is initially deposited by the APS process on the 
substrate of Ti-6Al-4V alloy. Then, the influence of 
the heat treatment process on the characteristics  
of the developed coating is studied through 
different characterization techniques such as 
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image analysis (Image J) software, X-ray diffraction, 
and FESEM.      
 
2. Materials and Methods

The commercial sub-micron-sized TCP powder 
is procured and agglomerated by spray drying 
technique to improve its flowability. The ultrasonic 
cleaner is used to remove grease, dust, and other 
loose contaminants from the surface of the 
substrate Ti-6Al-4V ELI (extra low interstitial). After 
drying, the substrates are grit blasted in a suction-
type blast cabinet to obtain average surface 
roughness of around 5 µm (Hussain et al., 2022). 
Loosely adhered particles are removed from the 
grit-blasted surface by an air jet. Before starting 
the coating operation, the substrates are pre-heat 
treated up to a temperature of 200 ℃ through 
the APS gun to improve the wettability of the 
surface and reduce the residual stress. APS process 
conditions are optimized by performing several 
trials to achieve better quality and adhesion of 
TCP coating. The optimized conditions used for 
the deposition of the final coating are depicted in 
Table 1. A 300 µm thick TCP coating is deposited 
on the substrate by the APS technique. Further, 
the TCP-coated sample is heat treated in a muffle 
furnace operating in a normal atmosphere. The 
maximum temperature and residence time are 
set as 600 ℃ and 2 h, respectively. Further, in 
the heat treatment, a heating rate of 15 ℃/min 
is employed and followed by furnace cooling. A 
slow-speed diamond cutter is used for sectioning 
the heat-treated and as-sprayed coatings to 
obtain small specimens. The specimens are then 
hot-mounted to polish the cross-section for 
microstructure study. The standard metallographic 
step-by-step procedure is adopted for the sample 
preparation. A field-emission scanning electron 
microscope (FESEM) is operated under secondary 
electron mode to investigate the cross-section 
microstructure and top surface morphology of 
the coatings. The crystalline phases observed 

in the as-deposited and heat-treated coatings 
are analyzed by the X-ray diffractometry (XRD) 
technique. Image J software is used to measure the 
porosity of both coatings by selecting the cross-
section FESEM images. The portion of the image, 
including pores, is considered for measurement 
purposes. The average percentage of porosity is 
estimated by evaluating the area fraction of several 
pores present in the coating.

3. Results and Discussion

The FESEM images of as-deposited plasma 
sprayed tricalcium phosphate coating are shown in  
Fig. 1-3. The top microstructure and surface 
morphology of the as-sprayed coating illustrated  
in Fig. 1 indicates the presence of both fully  
molten and partially melted particles on the 
surface. The coating is well adherent to the 
substrate, as shown in Fig. 2. High magnification 

Table 1 
Optimized process parameters for atmospheric 
plasma spray coatings.

Parameters Values
Voltage (V) 45
Current (A) 790
Secondary gas ( H2) flow rate (SCFH) 6
Primary gas ( Ar) flow rate (SCFH) 65
Stand of distance (mm) 100
Feed rate of powder (g/min) 10

Fig. 1. FESEM image of the top surface of as-sprayed 
plasma sprayed tricalcium phosphate coating.

Fig. 2. FESEM image of the cross-section surface of 
plasma sprayed tricalcium phosphate coating.
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image of the coating cross-section reveals the 
presence of defects, pores, and micro-cracks, 
as illustrated in Fig. 3. The presence of defects is 
due to the removal of loosely adhered un-melted 
TCP particles during the polishing operation. The 
thermal stresses caused by the cooling effects  
of the inhomogeneous TCP coating have resulted  
in the formation of cracks passing through the 
weak defective zones.

The FESEM images of heat-treated plasma  
sprayed tricalcium phosphate coating are illustrated 
in Fig. 4-6. The top surface morphology of the 
coating depicted in Fig. 4 reveals the presence 
of more fully melted particles as compared to 
the same of the as-deposited coating. The size 
of the partially melted globules is also appeared 
to be enlarged. The coating is well adherent  
to the substrate after post heat treatment also,  

as depicted in Fig. 5. From Fig. 6, the defects such 
as crater, pore, and micro-crack are observed  
to be lesser than the same of as-sprayed coating. 
The heating effect has caused the grains and 
partially melted particles to expand in volume, as 
clearly seen in Fig. 4. The increased volume of the 
grains in the solid coating has helped to suppress 
the pores and cracks to some extent.
 
The XRD characteristic patterns of the as- 
deposited and post heat-treated plasma-sprayed 
tricalcium phosphate coatings are depicted in 
Fig. 7. Most of the significant diffraction peaks 
index with the TCP phase, and few peaks belong 
to calcium oxide and tetra calcium phosphate in 
the case of as-deposited coating as depicted in  
Fig. 7(a). On the other hand, all the diffraction 
peaks are observed to be of TCP phase only 
for the heat-treated coating, as illustrated in  

Fig. 3. High magnification cross-sectional FESEM 
micrograph of plasma sprayed tricalcium  

phosphate coating.

Fig. 4. FESEM micrograph of the top surface  
of the heat-treated plasma sprayed  

tricalcium phosphate coating.

Fig. 5. Cross-sectional FESEM micrograph  
of the heat-treated plasma sprayed  

tricalcium phosphate coating.

Fig. 6. High magnification cross-sectional  
FESEM image of the heat-treated  

plasma sprayed tricalcium phosphate coating.
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Fig. 7 (b). The peaks of the TCP phase are found 
to be sharper after heat treatment compared 
to the same of as-deposited TCP coating. This 
indicates increased crystallization of phases in 
heat-treated TCP coating. By heat treatment of  
the as-deposited TCP coating at 600 oC, the 
secondary phases, such as calcium oxide and tetra 
calcium phosphate, are completely transformed 
into stable tricalcium phosphate phases, as shown 
in Fig. 7(b). This is one of the major reasons for the 
reduction of porosity after heat treatment of TCP 
coating. The cell volume of the TCP phase is much 
more than the same of the CaO and TTCP phases. 
Hence, the propagation of cracks is found to be 
restricted in such a coated sample. The percentage 
of porosity estimated in the as-deposited and  
post heat-treated plasma-sprayed tricalcium 
phosphate coatings is shown in Fig. 8. Porosity 

percentage is found to be decreased from 11 to  
7 % after heat treatment.

4. Conclusions

In the present research work, TCP coating is 
successfully deposited by the APS process on the 
titanium alloy substrate. Further, the deposited 
coating is heat treated at 600℃ for a residence 
time of 2 h. The role of the post heat treatment 
on the coating properties, such as the morphology, 
phases, and microstructure, is investigated. Based 
on the results obtained from this study, the 
following important conclusions are drawn in a 
point-wise manner.

1. The CaO and TTCP phases formed in the 
as-sprayed coating can be completely 
converted into TCP phases by heat treatment. 

2. Heat treatment helps to improve the coating 
density by reducing the porosity. The expansion 
of the partially melted TCP globules present  
on the top surface under the heating effect 
seems to improve the wettability. 

3. Defects such as micro-crack and craters are 
observed to be lesser in post heat-treated 
coating than in the as-sprayed coating.
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