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To register motion from video of vibrating tools, acquisition must ensure that  
motion is spatially and temporally resolved. However, since tools often vibrate 
with subpixel level motion, and since cameras often trade speed for resolution, if  
acquisition is to respect the Nyquist limit to avoid temporal aliasing, then the spatial 
resolution is often not sufficient to detect small cutting tool motion. To address 
this problem, this paper shows for the first time that subpixel level tool motion 
can be inferred instead by using convolution neural networks. We train our model  
on a database using the phase-based optical flow scheme that is a subpixel level  
motion registration algorithm. Our model is shown to be capable of detecting 
small motion correctly. Though the frequency of vibration estimated from the  
registered motion is correct, further work is necessary on fine tuning model  
architecture to fix the errors observed in the estimation of damping.
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1. Introduction

Vision-based modal analysis involves the extraction 
of modal parameters from motion registered from 
video of vibrating objects using image processing 
schemes. The method proffers advantages over 
the more traditional experimental modal analysis 
methods, especially for machine tool systems 
(Law et al., 2020; Gupta et al., 2021; Gupta & Law, 
2021; Raizada et al., 2022). These include no mass 
loading effects, allowing for shape analysis with one 
measurement, and simple experimental setups. 
However, to truly leverage the potential of the 
methods, motion must be first resolved correctly. 
Since tools often vibrate at high frequencies with 
subpixel level motion (Gupta et al., 2021), and 
since cameras often trade speed for resolution, 
if acquisition is to respect the Nyquist limit to 
avoid temporal aliasing (Law et al, 2022; Rajput & 
Law, 2022; Lambora et al., 2022), then the spatial 
resolution is often not sufficient to detect small 
cutting tool motion (Raizada et al., 2022; Nuhman 
et al., 2022). Since recovery of motion from 
potentially temporally aliased signals has been 
addressed in prior work (Law et al, 2022; Rajput 
& Law, 2022; Lambora et al., 2022), this paper 

focuses its attention on addressing the problem of 
registering small tool motion from video.

Prior work on registering small motion has focused 
on the use of intensity- and phase-based optical 
flow algorithms (Nuhman et al., 2022; Javh et al., 
2017; Luan et al., 2021), and/or on using hardware 
fixes such as extension tubes with lenses to  
magnify the field of view (Nuhman et al., 2022). 
Recent work has also reported the use of deep 
learning methods to infer small subpixel level 
motion of vibrating cantilevered structures and 
other civil infrastructure (Luan et al., 2021). In 
line with the work reported in (Luan et al., 2021), 
and because our prior work (Nuhman et al., 2022) 
has already addressed subpixel level motion 
registration using optical flow-based schemes 
and hardware fixes, this paper shows for the first 
time that subpixel level cutting tool motion can be 
inferred by using convolution neural networks.

Deep learning methods like convolutional neural 
networks (CNN) are seeing wide scale adoption 
across engineering domains for image/video 
analysis, and for motion estimation. The most 
striking feature of the CNN’s architecture is its  
ability to successfully capture the spatial and 
temporal information  in an image through the 
application of relevant filters which it can learn 
through training. This is an advantage that it has 
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over other image processing techniques where 
filters are to be designed manually for every 
application of interest (Gupta et al., 2021; Raizada 
et al., 2022). 

The oft-used CNN model for optical flow-based 
motion registration is the FlowNet model 
(Dosovitskiy et al., 2015). Since the FlowNet model 
has become the de facto CNN model, we too use 
the same architecture herein. This is supervised 
learning model whose model architecture 
comprises convolution and deconvolution layers 
with residual connections. The original model 
was trained on synthetic datasets, partly due to 
lack of sufficient ‘ground truth’ data to train the 
CNN. Since the original synthetic training dataset  
lacked subpixel level motion features, and since  
our aim is to extract subpixel level motion, we 
propose training the model with video that has 
subpixel level motion. We train the model using 
videos of a tool vibrating with potentially small 
and subpixel level motion, whose motion was 
recorded in our laboratory using a high-speed 
camera. Ground truths for training from these 
videos is generated using the phase-based optical 
flow algorithm which can provide an accurate 
displacement estimation even for subpixel motion 
(Nuhman et al., 2022; Luan et al., 2021; Fleet & 
Jepson, 1990). 

The remainder of the paper is organized as 
follows. At first, in Section 2 we overview the 
CNN architecture. Section 3 discusses generation 
of training data sets. Section 4 discusses the 
experimental setups. These are used for training 
and for testing. Section 5 present results for  
two illustrative cases showing how the CNN 
model can estimate small subpixel level motion 
for a grooving blade and for an end mill. The main 
conclusions follow.

2. Overview of the Convolution Neural 
Network

The model architecture consists of several 
convolution layers followed by several 
deconvolution layers with residual connections 
between both layers. Every layer of a convolution 
neural network takes inputs, applies filters, and 
gives an output in the forward propagation. In  
the backward propagation of the network, filters  
are updated in such a way that they can extract  
useful information from the input. A schematic 
of such a network is shown in Fig. 1. The filters, 
otherwise called kernels with size 𝑘 × 𝑘 form the  
learnable unit of the neural network. k is a 

hyperparameter that must be given as an input by 
the user while designing the model architecture.

A convolution operation over a 𝑛 × 𝑛 sized input  
by a 𝑘 × 𝑘 sized kernel includes sliding the kernel 
over  𝑘 × 𝑘 subspace of input and performing a 
summation of the dot product of kernel and local 
subspace to give a single cell in the output as: 

  ....(1)

wherein G  is the output matrix, F is the input  
image matrix consisting of entries corresponding 
to pixel intensities, W is the kernel matrix of size   
𝑘 × 𝑘 and  𝑥 and � are coordinates of point output 
in matrix  G as demonstrated in Fig. 2.

The total size of output after a convolution  
depends on two other hyperparameters namely, 
the stride which controls how much the kernel 
slides in every operation, and padding which 
controls the extra pixels added to an image  
border given by:

             ......................(2)

wherein Sout is output size,  Sin is input size, 𝑝 is 
padding size, 𝑘 is kernel size and s is the stride. 

Fig. 1. CNN architecture for our model.

Fig. 2. Schematic of a convolution operation. 
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A deconvolution layer could be understood as 
backward convolution. It increases the spatial 
size of our input. It has hyperparameters like 
those of the convolution layer that also control  
its operations. The size of the kernels in the  
forward and backward propagation, the stride, 
and the number of layers are all tuned for our 
application of interest, as is discussed in Section  
5 of this paper, i.e., after discussing how we 
generate datasets to train this model (Section 3) 
and what experiments we conduct for training and 
testing (Section 4).   

3. Method to Generate Training Dataset 

To train our CNN model for it to learn, we require 
ground truth datasets. For this, we use motion 
extracted from video of a tool vibrating with 
potentially small and subpixel level motion. 
To extract the ground truth data necessary for  
training, we use the phase-based optical flow 
scheme which is capable of subpixel level motion 
estimation (Nuhman et al., 2022; Luan et al., 2021) 
and has been shown to perform better than the 
intensity-based optical flow scheme (Nuhman et 
al., 2022). An overview of how we extract ground 
truth motion is summarized below. Details in 
(Nuhman et al., 2022; Fleet & Jepson, 1990).

In Phase-based optical flow, we process the  
image sequence with the help of an oriented  
Gabor filter to obtain information about the 
localized motion (Nuhman et al., 2022; Fleet & 
Jepson, 1990). Gabor filter is a complex filter 
that gives information about local phase ɸ and 
local amplitude � in orientation θ for an image of 
intensity  I(𝑥, �, t0) at a time t0:

  ..(3)

wherein G and H are quadrature pair that differs in 
phase by  90oand represent a complex Gabor filter.

The phase-based scheme assumes a constant  
phase whose evolution with time gives the 
displacement signal (Fleet & Jepson, 1990):

                                       ...............(4)

This constant phase assumption can be converted 
to a phase gradient equation expressed as:

                                          ...............(5)

wherein ∇ɸ = (δɸ/δ𝑥, δɸ/δ𝑦) is the spatial phase 
gradient, 𝒗= (𝒗𝑥, 𝒗𝑦)  is optical flow velocity in 𝑥 

and 𝑦  direction and ɸ=(δɸ/δt) is temporal phase 
gradient.

For θ = 0 and θ = π/2, we get δɸ0/δ𝑦 = 0  and δɸπ/2/
δ𝑥 = 0 respectively. Therefore, from Eq. (5) we 
obtain velocities in x and y directions as:

 
   ............(6)

and,

   ..............(7)

Displacement in x and y directions can be obtained 
by integrating velocities as:

  ..(8)

and,

  ..(9)

Above procedures are used to generate datasets 
that serve as ground truths for training purposes. 
Experimental setups to acquire training datasets 
are discussed next. 

4. Experimental Setups

The experimental setups to generate training  
data are shown in Fig. 3. These setups are also 
used to test our models. The setups include one 
to measure a flexible grooving blade mounted on 
a CNC turning machine – see Fig. 3(a), and another 
to measure a flexible end mill mounted on a  
CNC milling machine – see Fig. 3(b). We used 
a Chronos 2.1 camera to record videos of the 
tools when they were excited with an impulse 
excitation. The camera was focused on the free 
edge of the tool, since that is the location at 
which motion must be registered. We used a DC 
light and white background for all measurements 
such as to properly illuminate the tools being  
recorded and to minimize the influence of noise. 
For all measurements, we used a standard  
18-55 mm lens with the aperture kept wide open 
and ISO settings as 2000. With the setups shown, 
we are only interested in estimating in plane 
motion, i.e., along the Z axis for the grooving blade, 
and along the Y axis for the end mill.
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We recorded two videos of the vibrating  
grooving blade at frame rates of 5406 frames per 
second (fps) and at 10488 fps. The pixel resolution 
for the first recording was 800 x 480, and for  
the second it was 640 x 240. The tool had a width 
of 8 mm, making the per pixel resolution in the  
first case to be 87 µm, and it was 84 µm in the 
second case. Pixel sizes were different since the 
image resolutions in both cases were different.  
The end mill was recorded at 2142 fps and with 
an image resolution of 1280 x 720. In this case 
the camera was placed 115 mm away from the 
tool that had a diameter of 16 mm, making the 
per pixel resolution 83 µm. These pixel resolutions 
are larger than the expected motion amplitude, 
i.e., subpixel level motion is likely, and hence the 
phase-based optical flow scheme is expected to 
be able to resolve this motion. The three videos 
together make up a total of 90,000 images – a 
dataset thought to be large enough to properly 
train the CNN model.

5. Results with CNN

This section discusses results obtained from 
our supervised and trained CNN model. In our 
implementation, the input consists of a reference 
and a current image, i.e., an image pair that is 
stacked together making our input size in pixels 
to be 48×48×2. This input is passed through four 
convolution layers with kernel sizes of 7×7, 5×5, 
3×3, and 3×3 with an output size of 8, 16, 32, and 
64, respectively. The stride size is kept as  2 pixels.  
This gives us an output after convolution of 
dimensions 6×6×64. The output from the 
convolution is passed through three deconvolution 

layers with kernel sizes 4×4, 4×4, and 3×3, 
respectively. After each deconvolution, we add 
input features from convolution layers residually 
making our output size to be 64, 48, and 32. 
Finally, we add two more convolution layers  
to get an output of dimension 48×48×1  which 
represents our full field horizontal displacements. 
The architecture is implemented using the Pytorch 
python library (Pinard, 2022).  

Consecutive frames were stacked together with 
the first frame while creating the dataset. The 
generated dataset was further divided into  
two parts for training and validation during our 
training process. The learning rate for the model 
was kept constant at 0.001, the Adam optimizer 
was used for gradient descent, and the endpoint 
error (EPE) (Luan et al., 2021) was used as the 
loss function with a batch size of 500. The model 
was trained for fifty epochs with the loss for  
both training and validation set decreasing in 
sync with validation loss not exceeding training  
loss which ensured that there is no overfitting in 
our model as shown in Fig. 4. 

To test our model, we took a different and smaller 
set of images from the recorded videos of the 
vibrating tools and processed them in a similar 
manner as that of the training dataset to create a 
testing database. Testing the model on previously 
unseen data would ensure the generalization of 
our model. Displacement thus obtained from  
our CNN model are shown in Fig. 5. Also shown 
in Fig. 5 are displacements obtained from the  
phase-based optical flow scheme – which is the 
ground truth for benchmarking. 

It is evident from Fig. 5 that though the time period 
of the learnt response from the CNN model for 
both tools is like that of the ground truth estimated 
from the phase-based optical flow method, 
there is a marked difference in the magnitudes.  

Fig. 3. Experimental setups for recording tool motion 
using a high-speed camera, (a) setup for grooving 

blade, and (b) setup for endmill cutter.

Fig. 4. Comparison of training and validation loss 
characterized by the end point error.
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This suggests that the CNN model may need further 
improvement by tuning. 

Since the objective of registering motion from 
video is to extract modal parameters from 
that video, we extract modal parameters from 
response obtained for each tool using eigensystem 
realization algorithm (ERA) (Gupta et al., 2020) 
and list those in Table 1. We also list in Table 1, 
parameters extracted from phase-based optical 
flow that serve as the benchmark. And as is evident 
from Table 1, the CNN model can correctly estimate 
the natural frequencies (f), however, the damping 
ratio (ζ), especially for the end mill, is grossly 
underestimated. Since damping governs the 
magnitude and decay of the response, differences 
observed in the registered motion naturally 
transmit to errors in damping estimated.  

6. Conclusion

This paper showed, for the first time, that a 
supervised convolution neural network model  
can be trained to learn and predict small subpixel 
level cutting tool motion. The model was trained 
on data generated from in-house recordings of 

cutting tools vibrating with small motion. For 
training, a phase-based optical flow algorithm  
was used to estimate small displacements that 
served as ground truths. Predictions from the 
CNN model shows that though frequencies of 
vibration are estimated correctly, there are, in 
some instances errors in estimating the vibration 
amplitudes. Further work is necessary to fine 
tune model architecture amongst other things to 
improve predictions. 
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