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Abrasive jet machining (AJM) is often applied in drilling of hard and brittle ceramic 
materials, and is also used for other processes like surface preparation, deburring, 
shot-peening, polishing, etc. AJM process parameters need be appropriately  
selected to have optimized responses like MRR, nozzle wear, etc. Experimental 
investigation is performed in this work by precisely controlling abrasive flow rate. 
Along with system pressure, abrasive flow rate, stand-off distance (SOD) and grain  
size are considered during performing AJM with silicon carbide abrasive on  
commercially pure 4 mm thick alumina tiles using response surface methodology  
(RSM). Analysis of variance is done to detect the relative significance of each of the 
variables. Artificial neural network (ANN) is constructed to estimate the response in 
AJM based on input parameters. Estimation of machining performance is effectively 
carried out by ANN based on the training data with less than 8% estimation error,  
particularly for MRR and NWR. 
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1. Introduction

The growing applications of ceramics, super alloys, 
composite materials and nanomaterials in the 
automotive, aerospace, medical and electronics 
industries are triggering challenges to machining 
industries. In this concern, abrasive erosion for 
machining difficult-to-machine materials  are 
getting more important due to their efficient 
material removal capability which is more 
economical than big chip removal processes 
(Mattison, 1964). Although the history of 
development of abrasive technology like grinding 
started from circa 2000 B.C. in Egypt (Inasaki  
et al., 1993), abrasive machining technologies  
play a big role in manufacturing industries today  
due to typical favorable mechanical characteristics  
of abrasives, like hardness, heat resistance,  
toughness, friability (Linken, 2015), etc. Beyond  
grinding, different other abrasive material 
processing techniques are also being employed 
widely in industries at present (Kalpakjian & 
Schmid, 2007). 

In the AJM process, materials are removed from 
the workpiece by a jet of air and abrasive mixture 

possessing high kinetic energy through erosion 
(Chauhan et al., 2008). The abrasive jet system came 
to the main-stream of commercial applications  
for cleaning and cutting just after introducing 
ceramic nozzle in the 1970s (Melentiev & Fang, 
2018). This method is extensively used to drill hard 
and brittle materials (Liu et al., 2019). A similar 
abrasive jet formed by water is called abrasive 
water jet (Aydin et al., 2011), which is popular in 
industries for high-speed cutting of thin sheets to 
thick metal flat. 

1.1. Applications of AJM process

Among various abrasive machining technologies,  
AJM process is having several recent and future 
application possibilities (Haldar et al., 2018) like, 

Johnson, 1950 Welding, laser cladding, 
painting

Griffiths et al., 
1997

Substrate surface 
preparation for plasma 
spray coatings

Balasubramaniam 
et al., 1999

Independent of surface 
profile, deburring
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In recent years, several investigations are reported 
to improve the quality of abrasive jet machined 
components, optimization of process variables 
(Muju & Pathak, 1988), and control issues of health 
hazards. 

1.2. Applications and AJM of ceramic alumina    

The demand for machining superior quality 
ceramic alumina (Al2O3) is gradually increasing for 
its various progressive applications in tool inserts, 
drawing tools, corrosion and wear protection 
linings, friction discs, armor flats, ballistic 
protection components, electrical insulators, 
cryogenic isolators, heat sinks, ceramic seals  
(Chang & Kuo, 2007; Chak & Rao, 2007), etc. due 
to its cost benefit ratio as compared to other  
advanced ceramics featuring high hardness, 
high strength, high refractoriness stiffness, high  
modulus of elasticity (Silva et al., 2014), etc. 
Alumina is used for biomedical implants like hip 
and knee joints (Zeng, 2008). For its excellent 
corrosion-resistant ability even at an elevated 
temperature (Auerkari, 1996), is suitable for 
applications in chemical industries. Unique 
electronic characteristics of alumina find 
applications to make next generation computer 
memory and piezo-ceramic sensors (Pawar et al., 
2015). Alumina is well known for its difficult-to-
machine characteristics as it has high hardness 
and refractoriness along with some other  
excellent mechanical properties. And in these 
cases, AJM is found to be quite effective (Jain et 
al., 2002) for drilling, cutting, slotting, surface 
preparation, etc. in alumina. 

Alumina composite was observed (Wakuda et 
al., 2003) to have produced a rougher surface 
with higher MRR using synthetic diamond than 
silicon carbide by utilizing their micro-abrasive 
jets. AWJM of alumina ceramics by oscillating  
the water abrasive jet nozzle was investigated  
Xu & Wang, (2006) to report a significant increase  
(as much as 82%) in the depth of cut. Different  
works in AJM process related to MRR, kerf,  
surface roughness, depth of cut achieved and 
taper angle made were also reported (Srikanth  
et al., 2014). 

1.3. Present status of AJM performance 
analysis using RSM and ANN

A research group developed (Karmakar et al.,  
2020;  Ghara, 2018), an indigenous AJM system 
with the facility of precise variation and control 
of abrasive flow rate and abrasive and carrier  
gas (air) mixing ratio, and investigated on  
abrasive jet machining of soda-lime glass as 
well as porcelain tiles employing common 
silica sand and SiC abrasives, and surface  
preparation of stainless steel specimens by  
varying AJM process parameters. They reported 
higher material removal ability of SiC abrasives 
than silica sand. 

Regression technique along with response  
surface methodology (RSM) became a useful 
mathematical modeling for process parameters 
optimization of welding (Kavitha et al., 2021), 
machining processes (Xu & Wang, 2006), like 
processes, however, complex relationships would 
be difficult to model with this, and artificial 
neural networks (ANN) would be a good choice in  
such cases. Abrasive jet drilling of glass was 
attempted (Samani et al., 2014) to develop 
a precise predictive model by using various 
ANN architectures which were determined by 
calculating variance between actual experiment 
results and predicted results, and various errors. 
An experiment-based work on AJM of glass was 
reported (Abdalla et al., 2016), to find out the 
relative influence of different process variables. 
They used ANN to model MRR precisely and found 
only about 5% estimation error.

In this investigation, the influence of input AJM 
process parameters to obtain maximum MRR  
and low associated nozzle wear on the 4 mm thick 
alumina flat using SiC abrasive, are explored in  
an indigenously designed AJM setup. The ANN  
has been used to make a prediction model of the 
AJM process. 

Wakuda et al., 
2002 Clarification of erosive wear 

mechanism of a material,  
and, micromachining

Chauhan et al., 
2010
Jain et al., 2014

Liu et al., 2008 Abrasive polishing

Ke et al., 2011 Hard surface cleaning, 
finishing

Tyagi, 1012

Machining of brittle 
and ductile materials; 
impingement angle of 90o 

for brittle materials and 
20-30° for ductile material

Li et al., 2017 Surface modification (like 
hardening) by shot-peening

Liu et al., 2019 Rust cleaning
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2. Experimental Investigation on Drilling 
Blind Holes in Alumina Flat

2.1. Materials and method

The indigenously developed abrasive jet setup 
capable of controlling the abrasive flow rate and 
abrasive mixing ratio that is used in this work 
is shown in Fig. 1. A sample hole machined on 
an alumina A99 flat workpiece and a typical 
application of taper hole machined by abrasive jet 
erosion are shown in Fig. 2 (a) and (b) respectively. 

The experiment is carried out for machining crater 
on the 4 mm uniform alumina A99 flat work 
pieces. Table 1 shows the constituents of the work 
piece used. Among three types of commercial 
alumina (Silva et al., 2014), that are used for 
armor applications, A99 alumina is reported least  
relative density of 97.1 and maximum hardness  
of 14.8±0.7 HV, and bending strength of 227±20 
MPa with Weibull modulus of 8.

Experiments are designed as per response  
surface methodology (RSM) matrix corresponding 
to 3-factor 3-level system. In experiment set I  
and set II, three SOD values were chosen evenly 
within 2 to 4 mm, and abrasive grain size was 
similarly taken within 100 to 200 µm, while the 
abrasive flow rate of three values was evenly taken 
within 110 to 120 g.min-1 for experiment set I,  
and 120 to 140 g.min-1  abrasive flow rate for 
experiment Set II. Air pressure is kept constant 
as 4 kgf.cm-2 and 6 kgf.cm-2 during experiment set 
I and experiment set II respectively. The detail 
of calibration at 6 kgf.cm-2 air pressure and some 
analyses done are similar to that detailed in 

(Ghara et al., 2018). The stainless steel nozzle  
of 2 mm outlet diameter is used to form an 
abrasive jet. Instead of a through hole, the 
blind cavity is formed in the alumina workpiece  
within the 20s of machining time. MRR and  
nozzle wear rate (NWR) are found out by the 
difference in weight of work sample and nozzle  
before and after the experimental runs. 
Box-Behnken design of RSM is used to choose 
experimental runs which are tabulated in Table 2.

2.2. Modeling abrasive jet drilling using ANN

A back-propagation type ANN with Levenberg-
Marquardt training method is constructed by 
using obtained data (Table 2) during making  
blind holes employing an abrasive jet to  
estimate MRR and NWR. The number of hidden  
layer in ANN architecture has been taken one 
because the sample data are less complex and 
with fewer dimension. Different architectures 
of ANN with varying hidden nodes and layers 
are tried employing Minitab R2017a software to  
get the ANN structure giving minimum  
estimation error. Seletion of the number of  
neurons in the hidden layer has been 
performed and is detailed in the results and 
discussion section. The minimum error giving 
network is evaluated to have four input 
nodes (representing pressure, grain size, SOD,  
and abrasive flow rate), twenty nodes in the 
only one hidden layer, and two output nodes 
(representing MRR and NWR). It is denoted by 
4-20-2 architecture (Fig. 3). Training is stopped 
when the mean square error value stops reducing 
with the number of iterations. 

Table 1
Chemical composition (wt %) of commercial alumina A99.

Composition Al2O3 SiO2 CaO MgO Na2O Fe2O3

wt.% 99.7 0.0 0.0 0.1 0.1 0.02

Fig. 1. Indigenously developed AJM  
setup with inset nozzle and workpiece.

Fig. 2. (a) A hole machined on a 4 mm thick  
alumina A99 workpiece by using SiC abrasive jet  
(b) possible application of drilled alumina flat.
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Table 2
MRR and nozzle wear rate of SS nozzle during AJM of alumina A99 flat.

Run 
order

Air pressure 
(kgf.cm-2)

Grain 
size (µm)

SOD 
(mm)

Abrasive flow 
rate (g.min-1)

Machining 
time (s)

MRR
(g.min-1) NWR (g.min-1)

1 6 150 4 120 19.97 0.142900 0.006818
2 6 150 3 130 20.11 0.142700 0.006130
3 6 100 3 120 20.58 0.070810 0.002636
4 6 200 4 130 20.80 0.099950 0.001636
5 6 150 3 130 20.25 0.142100 0.006136
6 6 150 2 140 20.48 0.098200 0.002636
7 6 150 2 120 20.69 0.104270 0.006954
8 6 150 4 140 20.22 0.068310 0.005363
9 6 100 2 130 20.40 0.076180 0.001000

10 6 200 3 140 20.43 0.092000 0.002636
11 6 100 3 140 20.85 0.072136 0.002220
12 6 100 4 130 20.33 0.098510 0.004000
13 6 200 3 120 20.43 0.088000 0.004500
14 6 150 3 130 20.45 0.142500 0.006101
15 6 200 2 130 20.58 0.091954 0.006500
16 4 200 4 115 20.41 0.084500 0.002630
17 4 150 3 115 20.19 0.120004 0.008400
18 4 100 2 115 20.47 0.070590 0.002636
19 4 150 2 110 20.27 0.142770 0.002500
20 4 150 2 120 20.43 0.065000 0.002590
21 4 100 3 110 20.53 0.080530 0.001318
22 4 200 2 115 20.8 0.076000 0.002220
23 4 100 3 120 20.52 0.075900 0.002220
24 4 200 3 120 20.29 0.080460 0.001310
25 4 150 4 120 20.82 0.097200 0.003181
26 4 150 4 110 20.86 0.088500 0.000450
27 4 100 4 115 20.68 0.0883604 0.002636
28 4 150 3 115 20.53 0.132500 0.008000
29 4 150 3 115 20.52 0.134180 0.008220
30 4 200 3 110 20.05 0.125100 0.002270

Fig. 3. 4-20-2 structure of ANN used.
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3. Results and Discussion on the Present 
Work

Observations made in experiment sets I and II 
are first analyzed through ANOVA separately.  
Surface and contour plots are also made to find  
out the parametric influence on the response. 
Then with all the data of both the experiment  
sets, ANN is constructed for estimation.

3.1. Experiment set I performed at 4 kgf.cm-2     

air pressure

Experiment set I is performed by setting 4 kgf.cm-2 

system pressure. Analysis of variance (ANOVA) 
is done by adopting 95% confidence level to  
evaluate relative contribution of each variable 

on AJM performance using Minitab 17 software. 
Results obtained related to MRR are shown in 
Table 3. The small p-value of 0.019 for mass flow 
rate (Q), a value 0.016 for the interaction of SOD, 
a value of 0.006 for a square of grain size, d and 
a value of 0.023 for the square of SOD, δ indicate 
good correlation of them with MRR. 92.18% is 
the value of correlation coefficient, R2 for MRR  
that is more than 90%, thereby validating the 
model and it can be stated that parameters are 
significant. The low p-value (0.026) of the model 
also supports this.

Optimal values of material removal rate can be 
obtained through Fig. 4(a,b) and are given in  
Table 4. Fig.s 4(a, b) shows the influence of 
abrasive particle size and SOD on workpiece MRR 
with a set 115 g/min flow rate. MRR rises slowly 

Table 3
ANOVA for MRR under 4 kgf.cm-2 air pressure.

Source DOF Adj sum of 
squares

Adj mean of 
squares F-value p-value

Model 9 0008764 0.000974 6.55 0.026
Linear 3 0.002075 0.000692 4.65 0.065

d 1 0.000320 0.000320 2.16 0.202
δ 1 0.000002 0.000002 0.01 0.908
Q 1 0.001752 0.001752 11.79 0.019

Square 3 0.004399 0.001466 9.87 0.015
d*d 1 0.002987 0.002987 20.10 0.006
δ*δ 1 0.001565 0.001565 10.53 0.023
Q*Q 1 0.000365 0.000365 2.45 0.178

Two-way interaction 3 0.002290 0.000763 5.14 0.055
d* δ 1 0.000021 0.000021 0.14 0.719
d*Q 1 0.000399 0.000399 2.68 0.162
δ*Q 1 0.001869 0.001869 12.58 0.016
Error 5 0.000743 0.000149

Lack-of-fit 3 0.000623 0.000208 3.46 0.232
Pure error 2 0.000120 0.000060

Total 14 0.009507
[d = Size of abrasive grain, Q = Mass abrasive flow rate and δ = SOD]

Table 4
Summary of optimized MRR at a set 4 kgf.cm-2 system pressure.

SOD (mm) Grain size (µm) Avrasive flow rate (g.min-1) MRR (g.min-1)
2.4 to 3.6 130 to 175 115 (constant) > 0.12

3 (constant) 145 to 185 107 to 114 > 0.13
1.5 to 3.2 150 (constant) 107 to 114 > 0.13
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as grain size is incremented, reaches a maximum 
in a range of 130 to 175 µm and after that, it goes 
on decreasing. It is likely due to bigger abrasive 
particles causing increasingly larger shock load 
onto the workpiece to the point of maxima, but 
the further increment in particle cross-section 
may cause less impact thereby reducing MRR.  
It is also noted that MRR slowly rises with  
increasing SOD and gains a maximum near to  
2.4 to 3.6 mm and after that, it decreases with 
increasing SOD. Initially, just after departing 
the nozzle, the abrasive particle moves with 
acceleration and then attains a uniform velocity, 
and then decelerates similar to a gun departed 
bullet (projectile) trajectory though it happens 
in AJM in a micro-range as with that compared. 
Naturally, the particles attain higher MRR due to 
impacts when the particle velocity is maximum 
in its trajectory. So, the optimum value of SOD  
might be influenced by abrasive jet pressure.  
At higher pressure, higher SOD may result in  
higher MRR.  

Surface and contour plots in Fig. 5 (a, b) show the 
effect of size of abrasive particles and abrasive 
flow rate on MRR by setting 3 mm SOD (fixed). 
MRR is higher when the grain size is within 140 
to 185 µm and decrease beyond the range. It is 
probably because initially, MRR increases with 
larger grain size and when further bigger grains are 
used above a certain value, it causes decrease of 
jet flow velocity that results in reduction of MRR. 
The abrasive flow rate of 107 to 114 g/min with 
more than 145 to 180 µm grain size of abrasives 
attains higher MRR. Even, MRR decreases at a low 
rate while the abrasive flow rate increases further  
due to a higher number of particles may collide 
among themselves thereby losing energy.

Fig. 6 (a, b) depicts change of MRR with varying 
flow rate and SOD with 150 µm grain size. MRR 
is high within 1.5 to 3.2 mm of SOD with a 107 
to 114 g.min-1 abrasive flow rate. Out of that  
specified region, MRR is found to gradually 
decrease. Up to a certain limit of SOD, grains 
accelerate thereby gaining kinetic energy and 
increasing MRR, but when SOD is further increased, 
the particle velocity reduced and the jet also get 
diverged, that results in decreasing of MRR.

Nozzle wear rate (NWR) in the experiment at 4 
kgf.cm-2 air pressure is measured and shown in 
Table 2. Analysis of variance is done and results  
of NWR are shown in Table 5 with 95% confidence 
level. A statistical characteristic, p-value has  
been calculated for each term and is summarized 
in Table 5. 

Less value of p (0.066) of interaction of SOD 
and Q, 0.000 value of square of size of abrasive 
particles, SOD and Q show that they have quite 
good correlations with the response, that is, 
nozzle wear. The correlation coefficient R2 for 
NWR is as high as 98.32% indicating the model 
is quite significant, as also found out through a 
small model p-value of 0.001. Other parameters 
such as grain size (d), two-way interaction (d*δ), 
and SOD (δ) are somewhat less significant.  
Fig. 7(a,b) shows graphical presentations of  
wearing of nozzle related to the sizes of  
abrasive and SOD in the form of contour plot and 
surface plot respectively maintaining flow rate Q  
of 115 g.min-1. NWR attains a maximum at the 
region of 140 to 160 µm grain sizes and 2.80 to 
3.20 mm SOD. The nozzle wear might be increased 
due to the interaction of bigger sharp edges of 
bigger grits, but beyond a certain grain size, the 
contact area between particle and nozzle wall may 
decrease which may have reduced NWR.

Fig. 4. (a) Contour plot, and (b) surface plot showing  
a variation of MRR related to SOD (mm) and  

grain size (µm) at a constant flow rate.

Fig. 5. (a) Contour plot, and (b) surface plot showing  
a variation of MRR related to abrasive flow  

rate (g.min-1) and grain size (µm) at a constant SOD.

Fig. 6. (a) Contour plot, and (b) surface plot showing 
a variation of MRR related to SOD (mm) and abrasive 

flow rate (g.min-1) at a constant grain size.
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In Fig. 8 (a, b), change in nozzle wearing with  
rising grain sizes and flow rates are indicated as 
a contour plot and a surface plot where SOD is 
kept constant at 3 mm. The contour and surface 
plots show that NWR is higher between grain sizes 
of 130 to 160 µm at abrasive flow rate of 114 to  
116.5 g.min-1. NWR increases with the bigger 
grains up to a certain limit and a further increase  
of both flow rate Q and grain size may reduce 
contact time and contact area of grits with nozzle 
wall, thus reducing nozzle wearing.

Table 5
ANOVA for nozzle wear under 4 kgf.cm-2 air pressure.

Source DOF Adj sum of squares Adj mean of squares F -value p-value

Model 9 0.000093 0.000010 32.54 0.001

Linear 3 0000001 0.000000 1.17 0.408

d 1 0.000000 0.000000 0.06 0.821

δ 1 0.000000 0.000000 0.44 0.539

Q 1 0.000001 0.000001 3.02 0.143

Square 3 0.000089 0.000030 93.66 0.000

d*d 1 0.000034 0.000034 107.88 0.000

δ*δ 1 0.000026 0.000026 81.30 0.000

Q* Q 1 0.000042 0.000042 134.19 0.000

2-way interaction 3 0.000003 0.000001 2.80 0.148

d* δ 1 0.000000 0.000000 0.13 0.730

d * Q 1 0.000001 0.000001 2.74 0.159

δ* Q 1 0.000002 0.000002 5.52 0.066

Error 5 0.000002 0.000000

Lack-of-fit 3 0.000001 0.000000 12.46 0.075

Pure error 2 0.000000 0.000000

Total 14 0.000094

[d= Grain size, Q= Mass flow rate, and δ= SOD]

Fig. 7. (a) Contour plot, and (b) surface plot  
showing NWR related to SOD (mm) and  
grain size (µm) at a constant flow rate.

Fig. 8. (a) Contour plot, and (b) surface plot  
showing NWR related to abrasive flow rate (g.min-1) 

and grain size (µm) at a constant SOD.

Fig. 9. (a) Contour plot, and (b) surface plot showing 
NWR related to SOD (mm) and abrasive flow rate 

(g.min-1) at a constant grain size.
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Similar to above, Fig. 9(a, b) represent change 
of weight loss pattern at different values of Q 
and SOD at 150 µm grits. The maximum weight 
loss of nozzle takes place between  flow rate  
of 114 to 116.5 g.min-1 at SOD of 2.8 to 3.20 mm 
as observed from these plots. Nozzle wearing is 
detected at around the four corners of contour and 
surface plots corresponding to any combination 
that support the previous explanations. Summary 
of optimized values are given in Table 6.

The maximum MRR takes place using 150 µm SiC 
particles which are effective with the set system 
pressure. The higher irregular shapes of abrasives 
indicate sharp edges which might be the reason for 
effective material removal in this case.

3.2. Experiment set II performed at 6 kgf.cm-2 

air pressure

Similarly, experiment set II was conducted at 6 
kgf.cm-2 air pressure following 3-factor 3-level 
RSM matrix. Similar analyses were done and 
contour and surface plots of MRR concerning 
process parameters and their interactions were 
prepared as detailed elsewhere (Adak et al., 2021).  
Table 7 summarizes the optimal results thus  
obtained. The range of the process parameters  
and corresponding high MRR exceeding 0.14 g/min 
can easily be observed.

Weight loss of nozzle indicating nozzle wearing 
was computed along with MRR and ANOVA was 
also done. Details of these results are available 
in reference (Adak et al., 2021). Optimized values 
are extracted from (Adak et al., 2021), and are 
tabulated in Table 8.

3.3. Summary of results obtained from     
 experiment set I and II for low NWR  
  and high MRR

Optimized results as obtained from Experiment  
Set I and II through ANOVA are summarized in  
Table 9 corresponding to low NWR at high MRR. 
Abrasive of a low range of grain size is good as 
concerned with surface finish, somewhat low 

abrasive flow rate gives high MRR and low nozzle 
wearing, high range of SOD is favorable for low 
NWR as bouncing and striking of abrasives to  
nozzle becomes less. From experiment set I and 
II results, it is observed that MRR rises and NWR 
decrease with increasing carrier gas pressure. 
Higher gas pressure produces higher jet velocity 
which might float and suspend the abrasives well 

Table 6
Summary of optimized NWR at 4 kgf.cm-2 air pressure

SOD (mm)
Abrasive 
grain size 

(µm)

Abrasive 
flow rate 
(g.min-1)

NWR  
(g.min-1)

2.80 to 
3.20 140 to 160 115 

(constant) >0.008

3 
(constant) 135 to 160 114 to 

116.5 >0.008

2.80 to 
3.20

150  
(constant)

114 to 
116.5 >0.008

Table 7 
Summary of optimized MRR with 6 kgf.cm-2 system 
pressure.

SOD (mm)
Abrasive 
grain size 

(µm)

Abrasive 
flow rate 
(g.min-1)

MRR 
(g.min-1)

2.7 to 3.6 140 to 160 130 
(constant) >0.14

3 (constant) 140 to 165 125 to 130 >0.14

2.75 to 4 150 
(constant) 123 to 131 >0.14

Table 8
Summary of optimized NWR values at 6 kgf.cm-2 air 
pressure.

SOD (mm)
Abrasive 
grain size 

(µm)

Abrasive 
flow rate 
(g.min-1)

NWR 
(g.min-1)

2 to 4 140 to 160 130 
(constant) >0.006

3 (constant) 140 to 180 <130 >0.006

<2 150 
(constant) < 120 >0.007

Table 9 
The possible set of input for which the output will be optimum.

System pressure
(kgf.cm-2)

Abrasive grain 
size (µm)

Abrasive flow rate
(g.min-1)

SOD
(mm)

MRR 
(g.min-1)

NWR
(g.min-1)

4 170 110 2 0.1445 0.0019
6 160 125 3 0.168 0.0095
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and result in lower NWR inside the nozzle and 
higher MRR.

3.4. Discussion on results obtained through the 
application of ANN

Among 28 experimental datasets from Table 
2, for training, validation, and testing purpose,  
70%, 15%, and 15% of data are selected  
respectively as a standard procedure. The 
performance results, training state results and 
regression results of neural network training 
have been done with the variation in number 
of neurons, or nodes, in the hidden layer. The  
number of neuron in the hidden layer has 
been selected with the highest value of R in 
the regression results and the lowest value of  
MSE in the performance results of neural  
network training. The value of each results has 
been reflected in Table 10 which shows that  
best performance has been obtained with 20 
number of neurons in the hidden layer. So, 
further study has been done with 20 number of 
neurons in the hidden layer and the corresponding  
neural network architecture is 4-20-2. 

After training the network eight times, it is  
detected that the mean square error value  
becomes close to 0, and the coefficient of 
determination (R) becomes almost 1 which is  
quite satisfactory. After completing the training 
stage with the Leverberg-Marquardt training 
algorithm, validation is completed with 15 
iterations. Fig. 10 depicts that the validation 

Table 10
Variation of performance results, training state results and regression results of neural network training with the 
variation in number of neurons in the hidden layer.

No of 
neuron

Variation of the result of neural network training
Performace Result Training state Result Regression Result (R)

Validation Best Validation
Gradient

(10-5)
Mu

(10-7) Training Validation Test All
Iteration Epoch MSE

(10-5) Epoch

5 10 10 11.807 4 58.12 10 0.942 0.995 0.967 0.947

10 13 13 9.5227 7 5.52 1 0.971 0.987 0.955 0.969

15 10 10 37.8 4 0.20 1 0.983 0.917 0.972 0.973

20 15 15 8.616 9 0.03 0.0001 0.999 0.986 0.927 0.988

30 10 10 58.56 4 0.78 0.000001 0.996 0.949 0.963 0.976

50 8 8 38.25 2 0.35 0.001 0.986 0.941 0.919 0.968

Table 11
Trained value and experimental results of MRR and NWR.

Pressure
(kgf.cm-2)

Grain size 
(µm)

SOD.
(mm)

Abrasive 
flow rate
(g.min-1)

MRR (g.min-1) NWR (g.min-1)

Predicted 
value

Experimental 
value

Predicted 
value

Experimental 
value

6 200 2 130 0.0920 0.0919 0.0071 0.0065

4 200 3 110 0.1248 0.1251 0.0023 0.00227

Fig. 10. Validation performance.
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performance rate is satisfying within 15 epoch 
points and the best validation is obtained to be 
0.000086 at 9 epoch points. In this figure, the  
MSE value of testing performance is less than the 
MSE of validation because proper training has 
likely been done with the sample data. 

Experimental results are compared with the ANN 
model proposed in Fig. 11. Solid lines represent 
regression fitting between targets and outputs 
for training, validation, and testing. R-values 
for training, validation and testing appear to be  
0.999, 0.986 and 0.927 respectively. The overall 
analysis gives the R-value of 0.988. In this case,  
R = 1 means perfect matching between the 
experimental value (target) and ANN output.  
Since, ANN cannot usually be made to learn 
perfectly, therefore, if R is close to 1, it may be 
considered quite acceptable, and the neural 

network becomes the better one. So, R-values 
are found quite satisfactory in the present case. 
In Fig.s 12(a) and 12(b), comparisons between  
the experimentally obtained values and ANN 
output values are shown. 

Based on a strong training algorithmic tool, 
the ANN model can predict MRR value for a  
subsequent experimental run well before. It has 
been observed in Fig. 12(a) that the range of 
variation between run orders reduces towards  
the mean value for MRR indicating close matching  
of the predicted values with that of the  
experimental observations. In case of nozzle  
wear also, predicted values for nozzle wear rate 
show good matching with the experimental  
values as shown in Fig. 12(b) except for few 
deviations in some experimental runs such as in 
experiment No. 11, 17 and 23. 

Fig. 11. Comparisons between target and output of ANN.
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Finally, the authors have compared in Table 11 
the experimental value of MRR and NWR of  
run orders 15 and 30 in Table 2 with the ANN 
outcome when the input of the same run order  
is given to the model. The differences between  
trained values and experimented values are 
remarkably less and quite satisfactory. ANN is, 
therefore, found to be a quite effective tool for 
prediction or estimation for MRR and NWR in AJM.

4. Conclusion

Following are the conclusions that may be made 
out of the work done.

• SiC abrasive jet is effective for material removal 
in drilling on alumina ceramic tiles. 

• At a constant flow rate of an air-abrasive 
mixture, MRR and nozzle wear rate increase 

with the size of abrasive grains up to a value 
and then gets lowered.

• From experimental data, it is revealed that both 
MRR and nozzle wearing have an increasing 
trend related to the rate of flow of abrasive 
particles. 

• Within the range of the current experiment, 
MRR has an increasing tendency while there 
is a decreasing tendency of nozzle wearing  
when system pressure is set higher. 

• The artificial neural networks model with a 
4-20-2 configuration is found to be suitable, 
fast, and reliable based on the least MSE and 
favourable R values.

• Artificial neural network shows its 
effectiveness in estimating MRR having a quite 
close correlation with the actual performance. 
The differences between trained values and 

  (Series1: Experimental, Series 2: ANN Predicted)
Fig. 12. Experimental and predicted values of (a) MRR, and (b) NWR at different experimental runs.

(a)

(b)
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experimented values are considerably less in 
case of MRR and satisfactory. 

• For estimating nozzle wear rate, ANN estimates 
often show considerable deviations. If the 
number of experimental runs is increased, 
ANN estimation is expected to be better. 
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