
Manufacturing Technology Today, Vol. 22, No. 2, February 202310

Technical Paper

Learning machining stability using a bayesian model

Advait Pujari, Harsh Singh Rajput, Mohit Law*, Manjesh K. Singh
Indian Institute of Technology Kanpur, Kanpur, India

Instabilities in machining can be detrimental. Usually, analytical model-predicted 
stability charts guide selection of cutting parameters to ensure stable processes. 
However, since inputs to the model seldom account for the speed-dependent 
behaviour of the cutting process or the dynamics, models often fail to guide stable 
cutting parameter selection in real industrial settings. To address this issue, this paper 
discusses how real experimentally classified stable and unstable cutting data with 
all its vagaries and uncertainties can instead be used to learn the stability behaviour 
using a supervised Bayes' learning approach. We expand previously published work 
to systematically characterize how probability distributions, training data size, and 
thresholding influence the learning capacity of the Bayesian approach. Prediction 
accuracies of up to 95% are shown to be possible. We also show how the approach 
nicely extends itself to a continuous learning process. Results can hence inform further 
development towards self-optimizing and autonomous machining systems.
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1. Introduction

Selection of stable cutting parameters for 
high performance machining is often guided 
by knowledge of stability diagrams. Analytical 
models usually predict these diagrams. Inputs 
to the model like cutting force coefficients and 
measured dynamics influence the quality of 
prediction. However, since inputs seldom account 
for the speed-dependent behaviour of the cutting 
process or the dynamics, and since models 
make several linearizing assumptions, models, 
though useful, often fail to guide stable cutting 
parameter selection in real industrial settings. 
Since instabilities are detrimental to the part, the 
tool, and to elements of the machine, there is 
need for better quality predictions. To address this 
need, this paper discusses the use of a supervised 
Bayesian machine learning (ML) technique 
that can ‘learn’ the stability diagram from real 
experimentally classified stable and unstable data 
points without relying on an analytical model. 
Since real data captures all experimental vagaries 
and uncertainties in the cutting processes and/
or in the dynamics, the learnt stability diagram is 
expected to be more accurate and useful in guiding 
the selection of stable cutting parameters.

In the context of machine tool systems, use of 
ML models has been shown to be useful for tool  
wear analysis, thermal error compensation, 
monitoring and classifying states of machining as 
being stable or unstable, identifying dynamics,  
and to learn the stability diagram. Succinct 
summaries are available in this review paper 
(Aggogeri et al., 2021). 

Prior research on learning stability using ML models 
has discussed the use of artificial neural networks 
(ANN) (Friedrich et al., 2018), support vector 
machines (SVM) (Denkana et al., 2020; Friedrich 
et al., 2018), the k-nearest neighbourhood (kNN) 
method (Friedrich et al., 2017), and Bayesian 
methods (Chen et al., 2021; Karandikar et al., 
2020; Schmitz et al., 2022). Given that training 
models requires that experiments be done to 
obtain unstable data points, and since those 
experiments can be destructive due to the nature  
of instabilities, an accurate model that can be 
trained with less data, and one that extends 
itself to a continual learning scheme should be  
preferred. The Bayes’ method fits these criteria. It 
is hence our preferred method for implementation. 

The Bayes’ method to learn stability was in its 
original form intended to be agnostic to the  
process physics (Karandikar et al., 2020). 
However, in other related work, physics-informed 
modifications have been reported to work well 
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(Chen et al., 2021; Schmitz et al., 2022). Since it is 
desirable to develop a generalized ML model that 
is agnostic to the process physics and that can work 
with many different data sets, this study follows 
the approach reported in (Karandikar et al., 2020) 
that was blind to the physics of the process.

For given data that is pre-classified as stable/
unstable, the goal with the Bayesian approach is 
to calculate the posterior probability of stability 
at each grid point on the stability map. Though 
this was done in prior work (Chen et al., 2021; 
Karandikar et al., 2020; Schmitz et al., 2022)., 
that work did not systematically characterize the 
influence of changing Gaussian likelihoods, or the 
influence of changing threshold of the stability 
contour on the learning accuracy. Moreover, there 
was no discussion on how to characterize and 
quantify the learning accuracy of the prediction. 
Nor was the continual learning aspect of the 
method discussed. The aim of this paper is to 
address these unreported issues, and in doing so, 
we further show the strength of the Bayes’ method 
for learning machining stability. 

The remainder of the paper is organized as follows. 
At first, in Section 2, we discuss how we gather 
data that we feed to our learning model. We then 
briefly overview the Bayes’ method in Section 
3. In Section 4, we discuss results to show how  
changing likelihoods and threshold influence 
learning as well as discuss the continuous learning 
capacity of the method. Main conclusions follow.

2. Gathering Data for the ML Model

Since the experimental pathway to gather data  
that is needed to train a Bayesian model is 
costly due to the destructive nature of unstable 
experiments, this paper trains and tests the ML 
model using data obtained from emulations on 
an in-house developed hardware-in-the-loop 
(HiL) simulator that was built to study machining 
instabilities (Sahu & Law, 2022; Sahu et al., 2020). 
Experiments on the HiL simulator are used to  
classify combinations of depths of cuts and 
spindle speeds that result in unstable conditions. 
The process is akin to procedures in real cutting 
experiments. Emulations were carried out with 
assumed linear cutting force characteristics. 30 
experimental data points were recorded and 
plotted to obtain stability boundaries shown in  
Fig. 1. Though the Bayesian model can be 
adequately trained with this data, testing the 
model for its learning capacity needs more data 
than we have obtained. As such, we synthesize 

the emulated data with more data. Since the 
region below the boundary is stable and that 
above unstable, we add data points at depth of  
cut intervals of choice to pad the emulated data. 
In this manner, we generate additional 561 points. 
These data are also shown in Fig. 1.

3. Bayesian Learning for Machining Stability

This section outlines the Bayes’ procedure to 
learn machining stability diagrams. We only 
provide an overview and direct the reader to the  
original source (Karandikar et al., 2020) for details. 
Bayes’ rule updates probabilities when new 
information is made available. Mathematically, it 
can be stated as:

                            ...............(1)

wherein A and B are separate events. p(A |B) is 
the probability of event A occurring given that 
B is true. This is also known as the posterior  
probability of A given B. p(B |  A) is the probability 
of event B occurring given that A is true. This is  
also known as the likelihood of A given a fixed B. 
p(A) and p(B) are probabilities of A and B occurring 
and are known as the prior probabilities. In the 
context of machining stability, the Bayes’ rule 
becomes:

 
			                             ...............(2)

wherein 𝑝(stability) is an assumed prior 
probability of stability, 𝑝(experimental data) 
is the known probability of a data point being 
stable or not, 𝑝(experimental data|  stability) is 
the likelihood probability of a stable result at the 

Fig. 1. Data obtained from emulations on a HiL 
simulator (▲), along with synthesized data  
for stable (ο) and unstable conditions (×).  
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given experimental data point, and 𝑝(stability|  
experimental data) is the evaluated posterior 
probability of a stable data point for the given 
experimental condition. Likewise, it is also 
possible to evaluate the posterior probability of an  
unstable data point for the given experimental 
condition and given an assumed prior probability 
of instability, 𝑝(instability).  

For the given data points on the stability diagram 
(in Fig. 1) the goal with the Bayesian approach is 
to calculate the posterior probability of stability  
at each grid point on the axial depth of cut –  
spindle speed map. The procedure to do so is 
outlined in a flowchart in Fig. 2. The nomenclature 
is described in Table 1.

For every data point, we first evaluate the prior 
probability. This is done by assuming that as the 
depths of cut increase at any spindle speed, the 

likelihood of encountering instabilities increases. 
A linear distribution for the prior probability is 
assumed as shown in an inset in the flowchart in 
Figure 2. This prior probability remains the same 
for all spindle speeds.

The next step is to evaluate the likelihood 
probabilities. For this, it is assumed that the 
influence of a test result will reduce as the  
distance in terms of depths of cut or speeds from 
the test point increases. And, since the nature 
of cutting is such that data points below a point 
that is stable will remain stable, and those above 
a point that is unstable will remain unstable, the 
influence of a test point is not symmetric along  
the axial depths of cut and speeds. Moreover, since 
the boundary between the stable and unstable 
limits is not known a priori, the influence of test 
result being stable at a particular depth of cut 
will also reduce as the depth of cut increases. 
Furthermore, since knowledge that the width of  
the stability region is usually greater at smaller 
depths of cut than at larger depths of cut, that 
behaviour too must inform the distribution 
of the likelihood probability. Characterizing 
such behaviour is best done using Gaussian 
distributions, which was the genius of insight 
proffered in (Karandikar et al., 2020), that makes 

Fig. 2. An overview of our implementation  
of the bayes’ rule to learn stability diagrams.

Table 1
Nomenclature for bayesian learning approach, as 
also used in (Karandikar et al., 2020).

A uncertain event
B experimental result
N spindle speed
b axial depth of cut
i axial depth of cut grid point index
j spindle speed grid point index
p probability
s stable
u unstable
G arbitrary grid point in the domain
T test grid point

Ug total grid uncertainty 

+ stable result
- unstable result

σN standard deviation in spindle speed
σNbT standard deviation in spindle speed at 

test axial depth
σb standard deviation in axial depth of cut
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the Bayesian approach suitable for predicting 
machining stability. 

The influence of a test result along spindle speeds 
at the depth of cut of interest, bT is defined as 
σNbT with the mean being the test spindle speed 
of interest, and the influence of the test result 
being restricted to 3σNbT. The subscript T refers to 
the test result under consideration. The likelihood 
probability of a stable result at T (p(+T )NT,bT given G, 
another test result on the depth of cut – spindle 
map that is stable, is one, i.e., p(+T |sG)NT,bT=1. 
For the same depth of cut, bT, the likelihood  
probability of a stable result at T given G is 
stable reduces for other spindle speeds Nj 
following a Gaussian distribution, as shown in the 
schematic and in the equation in the insets in the  
flowchart in Fig. 2. 

For a changing depth of cut at the same spindle 
speed, NT, for example, when bi<bT, and the data 
point bT, NT is stable, the likelihood probability will 
remain one since for the case of the binary type 
of classification, every point below bT will remain 
stable. However, the probability of a data point 
remaining stable reduces as bi>bT, and is assumed 
to have no influence beyond bT+3σb, wherein σb 
is the standard deviation along the axial depth of 
cut, and bT+3σb is the mean for a non-normalized 
Gaussian probability density.Since the influence of 
stable results will be higher at lower axial depths 
of cut, σNbT is different for the cases of bi<bT and 
for bi>bT. This is shown in the equations within 
the flowchart in Fig. 2. Procedures to obtain 
the likelihood probability of instabilities follows 
the same logic as for the case of obtaining the 
likelihood probability of a stable result. The 
Gaussian distribution however is inverted for the 
case of the unstable result. 

Using procedures outlined above, a posterior 
probability is computed using the Bayes'  
conditional probability theorem using the 
equations shown in the insets in Fig. 2. To do 
so, the likelihood and prior probabilities are 
both used. For a representative test result T, the 
posterior probability is overlaid on the prior 
assumption within the inset in Fig. 2, and it 
clearly shows that probabilities change using the 
Bayes’ rule. This new probability becomes the  
prior probability for the subsequent experimental 
data point, and the process is repeated until all 
grid points on the spindle speed – axial depth of 
cut map are evaluated. 

After probabilities are updated using all test 
results, a stability lobe prediction from the 

Bayes’ approach can be made at axial depths of 
cut when the probability of stability is equal to a  
user-defined threshold. In prior work (Karandikar  
et al., 2020), that threshold was fixed at 0.5. 
However, since the threshold could influence 
the accuracy of the decision boundary, its  
influence the decision boundary is investigated in 
this work. 

Learning capacity of the Bayesian model 
is governed not only by the assumed prior  
distribution of probabilities, and the assumed 
Gaussian distributions for the likelihood 
probabilities, but also the choice of σN and σb 
within those distributions. σN and σb will both 
determine the influence of a test point and the 
posterior probabilities, which in turn, influences 
the width and amplitude of the stability  
boundaries after each update. In prior work on 
the use of the Bayes’ approach (Karandikar et al., 
2020), σN and σb and were selected as 3% of the 
spindle speed range and as 10% of the axial depth 
of cut range, respectively. Though these values 
resulted in good prediction accuracies, systematic 
investigations about the influence of different 
values of σN and σb remains unexplored and will be 
addressed in this work. To quantify the goodness 
of predictions, we use a confusion matrix and 
evaluate accuracies and F1 scores. 

4. Parameters Influencing Learning Capacity
 
This section characterizes the role of changing 
Gaussian distributions and thresholds and  
discusses continual learning using Bayes’ processes.

4.1.  Influence of changing gaussian  
distributions

Three data points were used to train the Bayesian 
model. These are marked in Fig. 3(a). The  
threshold for evaluating the stability boundary  
was taken to be 0.5, and σN and σb were selected 
as 3% of the spindle speed range and as 10% of 
the axial depth of cut range, respectively, i.e., as 
per what was reported in prior work (Karandikar 
et al., 2020). As is evident from Fig. 3(b),  
with these parameters, the stability boundary is 
well-predicted. The color map in Fig. 3(b) depicts 
the probability of stability, with blue representing  
a very low probability of stability and yellow  
indicating a high probability of stability. Although 
the stability boundary is determined by the 
threshold value, the color map gives an overview 
of the distribution of the evaluated posterior 
probabilities. 
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We tested the predicted boundary against 393 
synthesized stable data points and another 168 
unstable data points. The accuracy was found 
to be 86.63%, and the F1 score was found to be 
90.91%. Though this predicted accuracy is in line 
with observations in (Karandikar et al., 2020), 
there is still a 13.37% chance that an incorrect 
selection of cutting parameters might be made.  
To check if adjustments to the model that can 
further improve the quality of prediction, we 
evaluated how predictions change with σN and 
σb. These results are summarized in Fig. 3(c). 
Interestingly, the learning capacity characterized 
by the F1 score suggests that the model is more 
sensitive to a change in σN than in σb. 

Instead of tuning these parameters as constants, 
if knowledge of the stability behavior is used to 
inform their selections, then, since the width of 
the stability boundary is usually greater at higher 
spindle speeds than at lower spindle speeds, the 
Gaussian distribution for the spindle speed can 
characterize this behavior by potentially linearly 
increasing σN from a low value at lower spindle 
speeds to a higher value at high spindle speeds. 
This was tried and it was found that if σN is 
linearly increased from 3% to 8% of spindle speed  
range within the speed range of interest, the 
accuracy and the F1 score further improve to 
92.16% and to 94.39%, respectively. These results 
are summarized as a confusion matrix in Fig. 
3(d). The stability boundary also changes shape  
slightly with for this linearly varying σN with a fixed  
σb – as is evident from Fig. 3(b). This analysis  
suggests that the size of the Gaussian distribution 
must be tuned as per the data set of interest, and 
that it is not necessary that a fixed σN and σb are 
better than a linearly varying σN.

4.2. Influence of changing the threshold

Analysis herein was informed by the analysis in 
Section 4.1, i.e., the same number of data points 
were used to train-test, and σN was linearly 
increased from 3% to 8% of spindle speed range, 
and σb was taken to be fixed at 3% of the axial 
depth of cut range. Analysis for varying thresholds 
is shown in Fig. 4, and it is evident that the  
highest F1 score is not obtained for thresholds 
being fixed at 0.5, as they were in prior reports 
in (Karandikar et al., 2020), but for a threshold of 
0.45. This suggests that this parameter must also 
be tuned as necessary. 

4.3. Continuous learning using a bayesian   
 model

Since the very nature of the Bayes’ rule is that  
the posterior probability updates with every  
new data point that is provided to the model, the 
model extends itself naturally to a continuous 
learning process wherein new experimental  
data when available can be fed to the model to 
update the posterior and its predictive capability. 
To test this capacity of the Bayesian model,  
we train the model with four different data set 
sizes. Learnings from Sections 4.1 and 4.2 inform 
analysis in this section. Results are summarized 
in Fig. 5, and as is evident, in general, learning  
capacity improves with larger data sets, even if 
marginally. 

Fig. 3. (a) Data for training and testing  
(b) Two stability boundaries with and without tuning 

the gaussian distribution,  
(c) The influence of σN and σb on F1 score,  

(d) Confusion matrix for tuned gaussian distribution.

Fig. 4. The influence of threshold on  
F1 score and accuracy.

Fig. 5. The influence of training data size on  
F1 score and accuracy. 
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5. Conclusion

This paper demonstrated successfully that the 
stability diagram can be learnt from experimental 
data using a supervised Bayesian learning model. 
We observed that the Gaussian distributions that 
make up the likelihood probabilities for spindle 
speeds affect learning capacity more than the 
assumed distribution for depths of cuts. These 
must be tuned for the data set of interest, and 
not kept fixed as was done in prior work. We also 
observe that the thresholds used to evaluate 
stability contours must also be tuned for the 
data set of interest, and not kept fixed as was  
done in prior work. Accuracy was observed to 
improve with increasing size of training data, even 
if marginally. And, since wrong predictions may 
result in incorrect selection of cutting parameters 
that may result in instabilities that may result 
in damage, small changes are meaningful since 
mistakes are costly. As such, since learning stability 
behaviour from data includes in it the vagaries 
of experiments, methods discussed herein can 
overcome shortcomings of analytical model-
predictions. Moreover, since the Bayes’ method 
extends itself easily to a continual learning 
processes, it can find use in self-optimizing 
machining systems in which cutting parameter 
selection can be adapted autonomously and in 
real-time based on predictions.
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