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1. Introduction

Structures behave dynamically when they are 
subjected to loads or displacements. The most 
popular theories for the dynamic analysis of beams 
are Euler-Bernoulli beam theory and Timoshenko 
beam theory. When the beams are subjected 
to loads the primary effects of are transverse  
deflection due to pure bending and transverse 
inertia and the secondary effects are shear 
deformation and rotatory inertia of the cross-
section of the beam. The governing equation  
which includes the primary effects only is Euler-
Bernoulli beam and that which include secondary 
effects along with primary effects is Timoshenko 
beam [3]. The Euler-Bernoulli beam theory can 
give accurate results for modal analysis for lower  
modes of long cantilever beams (L/D>7) quite 
accurately. For higher modes of long cantilever 
beams and for short cantilever beams (L/D<7) 
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Timoshenko beam theory will give the accurate 
values for their modal analysis. In the year 1921, 
the effects of shear deformation and rotatory 
inertia were first introduced in the vibrating beam 
equations by Timoshenko, S. P. Timoshenko, in 
that article, considered a value of 2/3 as shear 
coefficient, K for rectangular cross section [1].

The shear coefficient, K is introduced for allowing 
the fact that the shear stress is non uniform across 
the cross section. According to the definition, 
the shear coefficient, Kis the ratio of the average 
shear strain on a section to the shear strain 
at the centroid. It is a dimensionless quantity, 
dependent on the shape of the cross section, and 
is considered because the shear stress and shear 
strain are not uniformly distributed over the cross 
section. The one-dimensional theory of beams 
can be improved by considering the transverse 
shear deformations and, in the case of vibrating 
beams, rotary inertia. The beam equations 
which consider these effects are generally 
called as Timoshenko’s beam equations [1, 2] 
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and have been received considerable attention 
in the literature. Timoshenko uses the values  
K = (6+12θ+6θ2) / (7+12 θ +4θ2) for the circular cross 
section and K = (5+5θ)/ (6+5θ) for the rectangular 
cross section and are nearer to the experimental 
values [2]. 

Cowper, G. R., 1966, derived the shear coefficients 
formulae for various cross sections like circular, 
hollow circular, rectangular, elliptical, semi-
circular, and thin-walled round tubular, square 
tubular, I-Section, Box section, Spar-And-Web, 
T-Section cross sections for static problems 
while deriving the equations of Timoshenko’s 
beam theory by integration of the equations of  
three-dimensional elasticity theory. The numerical 
results obtained from above formulae are agreed  
with Timoshenko’s results when Poisson’s ratio 
value, θ is taken as zero [4].

Kaneko concluded that the values obtained for 
K obtained from Timoshenko’s [2] equations 
are closer to the experimental values [5].  

Hutchinson and Zilmer compared their three 
dimensional series solution and a plane stress 
solution for the completely free beam with 
the Timoshenko beam theory for rectangular 
cross section. The plane stress solution is in 
good agreement with Timoshenko beam theory 
using Timoshenko’s shear coefficient, K [6].

However, in this article, the value obtained from 
the equation, K = (5+5θ)/ (6+5θ) [2], suggested 
by Timoshenko, S. P. for shear coefficient for 
rectangular cross section is used.

2. Governing Partial Differential Equations  for 
Free Transverse Vibrations of a Beam

In this investigation, for free transverse vibrational 
analysis a cantilever beam is considered  
(Ref. Fig .1).

Fig. 1. Cantilever beam.

2.1. Governing partial differential equations for 
free transverse vibrations of a uniform 
timoshenko beam [8]

In Timoshenko beam theory the effects of shear 
deformation (SD) and rotary inertia (RI) are 
considered for the flexural vibrations of a uniform 
rectangular short beam. The loading condition  
and free body diagram of a cantilever beam 
according to Timoshenko Beam Theory is shown in 
the Fig 2.

Fig. 2.  A transversely vibrating timoshenko beam [8].
a) External loads, p(x) and mb(x, t), in the 

coordinate system oxyz; b) free - body 
diagram for the beam segment dx.

For free transverse vibration analysis of a beam 
the external force per unit length, p(x, t) and the 
external bending moment per unit length, mb(x, t)
can be neglected. Now the coupled equations for 
the total deflection, y(x, t) and the rotation due to 
bending moment, ψ(x, t) using Timoshenko beam 
theory are given by

                                                                                   
                                                                                  (1a)

                                                                                   
                                                                                    (1b)

Where, E, Iz, ρ,  A, K, G are modulus of elasticity, 
second moment of area, mass density, cross-
sectional area, shear coefficient and shear modulus 
of the beam respectively. And also here K, the 
shear coefficient. 

Eliminating ψ(x, t) or y(x, t) from the equations 
(1a) and (1b) we respectively get two differential 
equations in y(x, t) and  ψ(x, t) as follows:
                                                                                              

  (2a)
 

  (2b)
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The total slope of the Timoshenko beam at an 
arbitrary time is given by the following equation: 

                                   (3a)

Where, 
ψ(x, t) is the rotational angle due to the bending 
moment and  y(x, t) is the shear strain due to the 
shearing force. From the above equation

  	                       (3b)

For the case of free vibrations, the translational 
and rotational displacement functions respectively 
will be assumed as follows:

                                                                                   (4a)  
   
                                                                        
                                                                                   (4b)  
                                    
Where,
Y(x) and  ψ(x) are the amplitudes of y(x, t) and 
ψ(x, t) respectively, and  is the circular frequency in 
rad/sec, t is the time in seconds and  .

Now, the solutions for the equations 2(a) and 2(b) 
from the equations (4a) and (4b) and eliminating 
the common term eiwt  will be as follows:

      (5a)

Where, the constants  are for the 
translational displacement function Y(x), and

        (5b)

Where, the constants A’, B’, C’, and D’ are for 
the rotational displacement function ψ(x). 
The equations Y(x), ψ(x) represent the translational 
and rotational mode shapes of the uniform 
Timoshenko beam respectively. In equations (5a, b),
 
                                                         
 

                                                                          (6a, b)

Where,

 

                                                            (7a, b)

     

Where,
 

 
                            
                    (9a, b)

Also, on substituting equations (4a, b) and  
γ(x, t) = Γ(x)eiwt into equations (3b) and then 
inserting equations (5a, b) into the resulting 
expression, one obtains the shear deformations 
displacement function as follows:
   
   (10)

Where,
 c = δ - a,    d =  ε - b (11a, b)
We can determine the integrating constants  

 by using boundary conditions of the 
beam.
For free vibrations, we have

 
 

              (12a, b, c)

Where,
Q(x), M(x), and Γ(x) represent the amplitudes of 
shear force, Q(x, t), bending moment, M(x, t), and 
shear strain, (x, t) respectively. And also we have

 	 (13a)
			   (13b)

2.1.1. Boundary conditions for calculating the 
constants 

For Free End:
            (14a, b)      
For Clamped End:
                                (15a, b)
For Hinged End:
  	    (16a, b)

From the equations (15a, b) and (14a, b) the 
boundary conditions for C-F beam are respectively 
as follows:

 		  (17a, b)

 		  (18a, b)

From the equations (5a), (5b) and (10), and  
(17a, b), (18a, b), we have
             	 (19a)
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         (19b)

 
For non-trivial solution of equations (19a)-(19d) 
requires that

 

and is the frequency equation of the C-F uniform 
Timoshenko beam which is a transcend equation.

Now, from equations (6a, b), (7a, b), (9a, b), and 
(11a, b), the equation (20) is a function of ω, and 
the any one of the numerical methods (such as 
half-interval method) can be used to calculate the 
natural frequencies ωr (r = 1, 2, 3 … represents 
mode number) [10]. 

2.2. Governing partial differential equations for 
free transverse vibration of a uniform euler-
bernoulli beam [8]

For the free transverse vibration of slender beam 
EBT neglect the external force per unit length 
p(x, t), and external bending moment per unit 
length, mb(x, t).

Fig 3. A Transversely vibrating euler-bernoulli beam [8].

a) The external force, p(x) and the external moment, 
mb(x, t), in the coordinate system oxyz;

b) The free-body diagram for the differential beam 
segment dx.

In Euler-Bernoulli beam theory we neglect the 
shear deformation (SD) and rotary inertia (RI), 
hence the differential equations for free transverse 
vibration are:

                       (21)

             (22)

Where, Q(x, t) is the shear force and E, Iz, and A are 
the young’s modulus, second moment of the area 
of the beam cross section, mass density, and cross-
sectional area of the uniform beam respectively. 
Consider the displacement function as:

    (23)

Where, Y(x) is the amplitude of y(x, t), ω is the 
circular frequency of the beam, t is the time, and  

From equations (22) and (23), we will get

                   (24)
	 or
  
                                                        (25)   
Now, the solution of the equation (24) will be in 
the form: 

    (26)

Where, 
 Β1, Β2, Β3 and Β4 are constants of integration.
 And since, 
 
  (27)

Equation (26) can also be expressed as:

  (28)

and is the natural mode shape of the uniform  
Euler-Bernoulli beam with the integration  
constants C1-C4 which can be determined from 
boundary conditions of the beam.

2.2.1. Boundary conditions for calculating 
integrating constants C1,  C2 ,  C3, C4

Once again recalling

                                                                            (29)

is the bending slope,

                                                      (30)

is the amplitude of   
                                                   (31)



Manufacturing Technology Today, Vol. 18, No. 8, August 2019 25

Technical Paper

is the amplitude of bending moment, and 

                                            (32)
is the amplitude of Q(x, t), 

Now, boundary conditions for determining the 
integrating constants C1-C4 are similar to as 
expressed in equations (14a, b), 15(a, b), and  
(16a, b) for free, clamped, and hinged ends 
respectively and are as follows:

At the clamped end (x=0):

 		  Y(0) = 0, Y' (0) = 0	       (33a,b)

At the free end (x = L):

		  Y" (L) = 0, Y"" (L) = 0             (34a,b)
           
Now, from the equations (28), (33a, b) we will get

 		  C3 = - C1,C4 = -C2 	      (35a,b)

On substituting the equations (35a, b) into equation 
(28) we will get

     (36)

Now from the equations (36) and (34a, b), we will 
obtain

 

For the non-trivial solution of the simultaneous 
equations (37a, b), it requires that

 

The above equation (40) is called the frequency of 
the Euler-Bernoulli beam and for the solution of 
this equation (40) we can use a numerical method 
like Half- Interval method [10].

3. Results and Discusions

For validating the fundamental natural frequencies 
obtained from ANSYS R14.5, EBT and TBT with 
experimental values we considered a numerical 
example of a cantilever beam with different  
lengths as 137.5mm, 112.5mm, 87.5mm, and 
62.5mm and the cross-sectional dimensions 

as 24.75mm width and 10 mm thickness. The 
material used is mild steel. The element selected 
for the beam definition is BEAM 2D 188 in  
ANSYS R14.5 [9].

Table 1.
Mechanical properties of mild steel.

S. No. Mechanical Property Value

1 Young’s Modulus 1.96 x 1011 Pa

2 Density 7850 Kg/m3

3 Poison’s Ratio 0.3

3.1. Ansys R14.5 Results [9]

The following figures named as Fig. 4, 5, 6, and 7 are 
the fundamental mode shapes and the corresponding 
fundamental natural frequencies of mild steel  
cantilever beams of various effective lengths  
137.5 mm, 112.5mm, 87.5mm, and 62.5 mm respectively  
obtained in ANSYS R14.5.

Fig 4. For Length, L=137.5 mm

Fig 5. For Length, L=112.5 mm

Fig 6. For Length, L=87.5 mm
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Fig 7. For length, L=62.5mm

From Table 2, we can observe that the 
fundamental natural frequency values of a 
cantilever beam increases as the length of the 
cantilever beam decreases. We can also observe 
that the fundamental natural frequency values 
obtained for identical cantilever beams in length 
and cross-section (rectangular) from Timoshenko 
Beam Theory (TBT) are closer to the experimental  
values than those than those obtained from  
ANSYS R14.5, and Euler-Bernoulli Theory (EBT).  
The percentage variation of the fundamental 
natural frequency value for the decrease in 

length of the cantilever beam for their identical  
cross-section (rectangular) obtained from the 
ANSYS R14.5 is increased more than that from 
Timoshenko Beam Theory (TBT), Euler-Bernoulli 
Theory (EBT) when compared with the values 
obtained from experimentation (Ref. Graph-1).

The figures named as Fig 8, 9, 10, 11 respectively 
show the first four principal mode shapes 
and the corresponding natural frequencies 
of the mild steel cantilever beam of length,  
L = 137.5 mm in ANSYS R14.5.

From Table 3, we can observe that the percentage 
variation of EBT values with ANSYS R14.5 values 
for the natural frequency of the first four modes 
for the rectangular cantilever beam of length 
137.5 mm is from -1.54% to 9.26%. And also the 
percentage variation of TBT values with ANSYS 
R14.5 values for the natural frequencies of  
the first four modes of a cantilever beam of length 
137.5 mm and identical rectangular cross-section 
is from -1.95% to -2.09% for the shear coefficient 
value, K=0.8667. The values obtained for TBT are 
nearer to the ANSYSR14.5 values than those for 
EBT values for short cantilever beam. The same can 
be observed in the following Graph 2.

Table 2.
Comparison of ANSYS R14.5 results, the results of EBT and TBT for different lengths of mild steel cantilever beam 
with experimental results.

S. 
No.

Length 
of 

beam, 
L, mm

Experimental 
Results (FRF  

Analysis)

ANSYS 
R14.5

Results

EBT
Results

TBT
Results

% variation of 
ANSYS  

R14.5 values  
with those of 
Experimental 

values

% variation 
of EBT values 
with those of 
Experimental 

values

% variation 
of TBT 

values for 
K = 0.8667 

with those of 
Experimental 

values

K = 
0.8667

ωn, Hz ωn, Hz ωn, Hz ωn, Hz

1 137.5 421.875 433.64 426.95 425.18 0.7 1.2 0.78

2 112.5 611.15 647.5 637.78 633.9 5.9 4.4 3.7

3 87.5 1012.15 1068.1 1053.85 1052.13 5.5 4.1 3.9

4 62.5 1943.75 2081.9 2066.4 2026.4 7.1 6.3 4.3

Table 3.
Comparison of ANSYS R14.5 Results with the results of EBT and TBT for mild steel cantilever beam of length,  
L = 137.5 mm for first four modes.

Mode 
No.

ANSYS 
R14.5  
ωn, Hz

EBT ωn, Hz
TBT ωn, Hz % variation of EBT values 

with ANSYS R14.5
% variation of TBT values for  
K = 0.8667 with ANSYS R14.5

K = 0.8667

1 433.64 426.95 425.18 -1.54 -1.95

2 2653.4 2675.55 2602.5 0.83 -1.91

3 7176.4 7.49E + 03 7034 4.36 -1.98

4 13437 14681 13,156.70 9.26 -2.09
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Graph 2. Percentage variation of EBT, TBT frequency ω�,Hz values with 
those from ANSYS R14.5 for the first four Modes.

Fig 9. Principal mode 2.

Fig 10. Principal mode 3.

Fig 11. Principal mode 4.

Fig 8. Principal Mode 1.

Graph 1. Percentage variation of fundamental natural frequency values for different lengths of 
cantilever beam using ANSYS R14.5, EBT and TBT with those obtained in Experimentation.
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Conclusions

1.	 We can observe that the fundamental natural 
frequency values of a cantilever beam will 
increase as the length of the cantilever beam 
reduces keeping the cross-section constant. 
And also we can observe that the fundamental 
natural frequency values for different lengths 
of the identical rectangular cross-section 
cantilever beam from Timoshenko Beam 
Theory (TBT), Euler-Bernoulli Theory (EBT)  are 
nearer to the experimentation values than 
those obtained from ANSYS R14.5.

2.	 The percentage variation of the fundamental 
natural frequencies for the decrease of the 
length of the cantilever beam obtained from 
the Euler-Bernoulli Theory (EBT) are more 
than those from the Timoshenko Beam Theory 
(TBT), ANSYS R14.5 when compared with the 
values obtained from experimentation.

3.	 We can also observe that the variation 
of EBT and TBT, ANSYS R14.5 values of 
fundamental natural frequency with those of 
experimentation for a fixed length of cantilever 
beam and identical cross-section is increased 
as the mode number is increased. 

4.	 The fundamental natural frequencies obtained 
from Timoshenko Beam Theory (TBT), are 
nearer to the ANSYS R14.5 than those values 
obtained from Euler-Bernoulli Theory (EBT).

Hence, we can say that for the analysis of free 
transverse vibrations of short cantilever beams 

either for lower or higher modes Timoshenko 
Beam Theory (TBT) is the best estimate than Euler-
Bernoulli Beam Theory (EBT). 
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