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The main objective of Topology Optimization is  optimal  distribution  of  material 
in a given design space sustaining the applied load under given limiting conditions.  
It is a widely used design tool. It covers various fields like machine designing,  
aerospace, nano-optics, architecture, fluids, thermofluids, civil, frequency analysis  
etc. In  this  paper,  the important role played by the topology optimization in 
different areas  is discussed and focus is given on industrial, defence, space, 
and fusion application. This paper also gives insight about different types of  
advanced  algorithmic  methods  used  in  topology  optimization.
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ABSTRACT

1. Introduction

In simple terms, we can describe Topology 
Optimization as a method used to distribute the 
material properly in the given domain with the 
predefined constraints without changing the 
performance of the material. It comes under 
structural optimization. Various  different  types  of 
softwares  are available for topology optimization 
like ANSYS, TOSCA OptiStruct, Nastran, INSPIRE, 
etc. The  product  development  process  of 
Topology Optimization is explained in below Fig. 1 
(Mueller Ottmar, 1999).

Now a days, the significance of Topology 
Optimization is increasing due to the increasing 
demand  of  light weight, material saving, less energy 
consuming and cost-effective components. From  
a gear to the structure of sky scrapers, everything  
is first optimized and then introduced in real  
world. For instance, the topology optimization of 
gear is as  shown  in  Fig. 2 (Chinmay Shah, 2018).

2. Algorithms

All    these   softwares   used   for    topology    optimization 
are executed with the use of finite element 
methods and optimization techniques based on 

*Corresponding author, 
  E-mail: ratnarajgor1998@gmail.com

algorithmic methods like Genetics Algorithms,  
PSO (Particle Swarm Method), Level Set Method, 
Homogenization Method, OC (Optimality Criteria 
Method), MMA (Method of Moving Asymptotes), 
HCA (Hybrid Cellular Automata), ESO (Evolutionary 
Structural Optimization), BESO (Bi-directional 
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Fig.1. The Product development process.

Fig. 2. Topology optimization of spur gear.
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Evolutionary Structural Optimization), SIMP  
(Solid Isotropic Microstructure with  Penalization), 
SQP (Sequential Quadratic Programming) and 
many more (Mannai, 2013). In the recent times, 
the improved  versions  of  these algorithms  are 
applied. For instance, MISQP (Mixed-Integer 
Sequential Quadratic Programming) which is 
an upgraded version  of SQP  is  used  by ANSYS.  
These algorithms are either iterative or direct 
solvers. These methods are  compared based on 
the various parameters like value of compliance, 
time taken, no. of iterations and the generated  
shape. Fanni  M. et al. (Fanni M., 2013) has  
compared the SQP, MMA, OC and HCA methods 
based  on  compliance  values, time  consumed  
and the resulted topological shape in each  
method. For example, a table of comparison 
between  ESO,  Soft-kill BESO, SIMP and  
Continuation  is  shown  in  table 1 (X. Y. Yang, 2015).

These  algorithms are also used to  combine 
different tools used in optimization and that 
also with minimum computational time. Vaheed 
Nezhadali  et  al. (Nezhadali, 2011)  has   done  
multi-objective  optimization  of industrial robots 
in his thesis by integrating  FEA  using  ANSYS 
with other tools such as Solid works, Dymola and 
MATLAB.

3. Applications of Topology Optimization

3.1. Industrial application of topology 
optimization

In  his  work   Dongdong Ge et al. (Dongdong 
Ge, 2017) has done optimization of body frame 
of electric car   in four working conditions  i.e. 
horizontal bending condition, emergency 
braking condition, ultimate torsion condition and 

emergency  turn condition. The  total mass of 
lower  body frame  was  reduced  from 17.88 Kg  
to 14.49 Kg i.e. 18.96%. The Optimized  design   
frame  is presented  in the below  Fig. 3  
(Dongdong Ge, 2017).

Qiusheng Ma et al. (Qiusheng Ma, 2012) have 
conducted topology optimization  of a high-
pressure   storage  tank  with  the   loading  
conditions  shown  in  Fig. 4.

Fig. 3. Detailed design of body frame after optimization.

Fig. 4. Load constraints of high-pressure storage tank.

Table 1 
Comparison of topology optimization methods.

Optimization 
parameters

Total 
Iteration Solutions Error (%)

ESO ER=1% 67 C=188.91 
Nmm 4.12

Soft-kill BESO ER=2%
p=3.0 44 C=183.25 

Nmm 1.0

SIMP move=0.02
p=3.0 37 C=196.48 

Nmm 8.29

Continuation
pinitial=1  
Δp=0.1
pend=5.0

337 C=188.44 
Nmm -
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The  optimized  results   were  set  side by side in 
the below  table 2 (Qiusheng Ma, 2012).

Byung Jun Kim et al. (Byung Jun Kim, 2016) did 
topology  optimization  of  paint  robot with 
the goal  of  increasing  the  stiffness of the 
system using SIMP method. Here part-level 
metamodel was  created  relating the stiffness 
and mass usage. Total strain energy of the robot is  
reduced from 9817.7 N-mm to 4959.0 N-mm but 
there was only one limitation i.e. computational 
time increased  from 40 h and 39 min to 50 h and 
59 min. Optimized  frames  of paint robot are 
showed in the Fig. 5 (Byung Jun Kim, 2016).

Huang H. & Zhang G et al. (Zhang, 2012) has done 
optimization of an L-shape arm of  Motorman 
HP-20 using the SIMP method. The difference 
in weight and  displacement  of original and  
optimized arm was 5.2 kg  and 0.066 mm 
respectively (Zhang, 2012). 

3.2. Defence application of topology 
optimization

Topology optimization of hull structure shown in 
Fig. 6 of wheeled combat vehicle was conducted 
by Harsh Pingale et al. (Harshal Pingale, 2018) 
using the SIMP method. Dimensions of vehicle 
are length=6.3m, breadth=2.5m, height=1.8m 
and total payload of vehicle consisting of self-
weight and external load= 13.5 ton. The optimized  
model of vehicle is shown in Fig. 7 (Harshal  
Pingale, 2018).

Nilesh Patel et al. (Rokade, 2018) has done 
topology optimisation of an Articulating Beam 

Fig. 7. Topology optimization nephogram  
of hull structure.

Fig. 5. Topology optimization results and  
optimization models: (a) Base Frame  

(b) Lower frame (c) Upper frame.

Fig. 6. The original hull structure.

Table 2
Comparison of original & optimized values of high pressure storage tank.

 
Mouth

thickness
[mm]

Tank
thickness

[mm]

Mouth
diameter

[mm]

Tank
diameter

r[mm

Maximum
stress
[MPa]

Mass of
the tank

[Kg]

Tank
volume

[m3]

Loading
Rate

Original 
value 23 18 44.5 185 238.04 242.62 0.142 

84 0.058739

Optimization 
1 20.523 16.02 40.095 166.69 240.39 193.048 0.141 9 0.073509

Optimization 
2 24.123 16.176 48.885 169.05 241.3 198.84 0.142 2 0.071511

Optimization 
3 23.223 16.958 42.292 170.24 233.08 209.748 0.142 1 0.067757
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of Article Launching System having payload of  
15.35 t and volume dimensions as 10.2 x 1.95 x  
1.5 m as shown in Fig. 8.

He considered two material displacement 
plots at articulation of 0° and 20° respectively.  
The constraints on the articulated beam are as 
shown in Fig. 9 (Rokade, 2018).

He made two designs, one with circular section 
and other with  rectangular  section and compared 
them. The maximum deflection and maximum 
stress of both designs were almost nearby. The 
weight of rectangular section (5.4t) was less than 
circular section (8.4t). Thus, rectangular section 
was  more  relevant compared to  circular one 
which is  presented in Fig. 10 below (Rokade, 2018).

3.3. Space application of topology optimization

Meera s. Prasad et al., (Meera S Prasad, 2017) 
in her  work has done topology optimization of 
launch vehicle, especially the interstage structure 
having diameter  and height  of 4 m and  aluminum 
alloy AA 2014  as material using the  material  
distribution method. The interstage structure  is  
as shown  in Fig. 11 (Meera S Prasad, 2017). FE 
ring, AE ring, Bulkhead, Thrust block and a sheet 
of 1.5mm thickness as outer cover are kept as 
non-design elements (Meera S Prasad, 2017). 
The weight of structure was reduced by 65% of 
the  original weight i.e. 2210 kg. The optimized 
interstage  structure  is  as  shown  in Fig. 12  
(Meera S Prasad, 2017).

Using Right First Time Robust Design (RFTRD) 
approach, A. R. Srinivas et al., (Srinivas, 2008) 
has done  optimization  of  spacecraft   payload  
elements  with  the  objective of  minimizing  
the  size  and mass. In  the optimized  mounting  
structure space was saved by 50%, mass was 
reduced by 20 to 30 % and realization time was 
improved by 83% (Srinivas, 2008).

3.4. Fusion application of topology  
optimization

S. Khorasani et al., (Sina Khorasani, 2000) has 
optimized poloidal field of Damavand Tokamak 
containing elongated plasma of aspect ratio of 
about five using genetics algorithm. After the 
optimization, the energy confinement time was 
increased by 25%, i.e. from 0.18 ms to 0.25 ms. 
The poloidal field of Damavand Tokamak before 
and  after  optimization is as shown in Fig. 13  
(Sina Khorasani, 2000). Fig. 12. Optimized interstage structure.

Fig. 8. Articulating beam of an article launching system.

Fig. 9. The constraints of articulating beam. 

Fig. 10. Articulating beam with rectangular sections.

Fig. 11. The Interstage structure.
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D. Combescure et al., (D. Combescure, 2011) 
in  his work  has  done  structural  analysis  and  
optimization of Tokamak ITER complex  which is a 
building of 120 × 80 m  with a base  isolation system 
consisting of  more than 500 steel reinforced  
neoprene pads and suggested changes in the 
dimensions of most  relevant  structural parts 
specially  giving  importance to thicker vertical  
walls. Panin A. et al., (Panin A., 2017)  has   
developed a calculation tool which under  
electromagnetic loading determines the  

mechanical strength of coil and aids in 
pre-optimization and  pre-dimensioning  of 
toroidal field  coils. It  is  presented  in below Fig. 14  
(Panin A., 2017).

Manoah Stephen et al., (M. S. Manuelraj, 2015) 
has done  structural  analysis  of ITER multipurpose 
deployer in which static structural, modal and 
frequency response spectrum analysis was 
carried out using iterative solver. At the end 
of MPD Transporter 2 t payload is considered  
(M. S. Manuelraj, 2015). The components of  
MPD Transporter  are  shown  in  Fig. 15   
(M. S. Manuelraj, 2015).

For the static structural analysis, the loading 
conditions  were  distributed  into 4 categories. 
And for the modal analysis, the frequency 
response spectrum of the mounting location of 
MPD transporter  is  as  shown  in  below Fig. 16 
(M. S. Manuelraj, 2015).

On  the  basis  of  results  of  static  structural  
analysis and  modal  analysis,  the  changes 

Fig. 14. Distribution of important stress components  
over homogenized WP grades  

(2014 & 2015 DEMO TFC layouts).

Fig. 15. Components of MPD transporter.

Fig. 16. Frequency response spectrum of  
MPD transporter.

Fig. 17. Components of MPD transporter.

Fig. 13. Before (left) and After (right) optimization 
poloidal field for damavand tokamak. 



Manufacturing Technology Today, Vol. 19, No. 3-4, Mar-Apr 202058

Technical Paper

were made  in the design of parts  containing 
overstressed  locations. For instance, thickness of 
main structural frame of Body B1 was increased 
from 20 mm to 30 mm, and  the  height  of  the  side 
frames were  increased by 150 mm. Similar kind  
of changes were made to other parts. The  
improved designs of overstressed parts are  
presented in  Fig. 17 below (M. S. Manuelraj, 2015).

5. Conclusion

This paper  in  general  highlights   the   use  of   
topology optimization as a pre-processing  tool  
in various applications. Here we can observe that  
when manipulator and the other components 
connected with it are optimized, the inertial 
load of the whole system is reduced without 
compromising the stiffness of the system. Due 
to the reduced weight the overall load on the 
actuators decreases. The material consumption 
is also reduced making the object cost effective. 
Thus, due to the favourable outputs topology 
optimization  is  extensively  used  as  a  design tool.
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